Stroke is primarily a neurodegenerative disease but can also severely impact the functions of other vital organs and deteriorate disease outcomes. A malfunction of the gastrointestinal tract (GIT), commonly observed in stroke patients, is often characterized by severe bowel obstruction, intestinal microbiota changes and inflammation. Over-activated immune cells after stroke are the major contributors to endorse intestinal inflammation and may induce damage to single-layer epithelial cell barriers. The post-stroke leakage of intestinal barriers may allow the translocation and dissemination of resident microflora to systemic organs and cause sepsis. This overshooting systemic immune reaction fuels ongoing inflammation in the degenerating brain and slows recovery. Currently, the therapeutic options to treat these GIT-associated anomalies are very limited and further research is required to develop novel treatments. In this mini-review, we first discuss the current knowledge from clinical studies and experimental stroke models that provide strong evidence of the existence of post-stroke GIT complications. Then, we review the literature regarding novel therapeutic approaches that might help to maintain GIT homeostasis and improve neurological outcomes in stroke patients.
Blood vasculature represents a complex network of vessels with varying lengths and diameters that are precisely organized in space to allow proper tissue function. Light-sheet fluorescence microscopy (LSFM) is very useful to generate tomograms of tissue vasculature with high spatial accuracy. Yet, quantitative LSFM analysis is still cumbersome and available methods are restricted to single organs and advanced computing hardware. Here, we introduce VesselExpress, an automated software that reliably analyzes six characteristic vascular network parameters including vessel diameter in LSFM data on average computing hardware. VesselExpress is ~100 times faster than other existing vessel analysis tools, requires no user interaction, integrates batch processing, and parallelization. Employing an innovative dual Frangi filter approach we show that obesity induces a large-scale modulation of brain vasculature in mice and that seven other major organs differ strongly in their 3D vascular makeup. Hence, VesselExpress transforms LSFM from an observational to an analytical working tool.
Lymphocyte contraction (LC) in central immune organs is a concomitant of sterile tissue injury, for example after stroke. Intestinal Peyers patches (PP) harbor large numbers of B cells, but how sterile tissue injury leads to LC in PP has not been explored. We observed rapid and macroscopically evident shrinkage of PP after stroke and myocardial infarction. Light-sheet fluorescence microscopy and flow cytometry revealed a strong reduction in the number of PP resident B cells. Mechanistically, tissue injury triggered the activation of neutrophils that released B cell-toxic neutrophil extracellular traps (NETs) decorated with citrullinated histone-H3. Antibody-mediated or genetically induced neutrophil-loss, NETs-degradation or blockade of their generation completely reversed B cell loss and preserved the tissue architecture of PP. We also found NET-like elements in human post-stroke plasma. Hence, we propose that targeting NET-generation or -function counteracts post-injury B cell contraction in PP and thereby maintains immune homeostasis at mucosal barriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.