Summary
The topic of interwell communication in unconventional reservoirs has received significant attention because it has direct implications for well-spacing considerations. However, it has been the observation of the authors that interference is often inferred without direct evidence of its occurrence, or without an understanding of the various mechanisms of interference. Some common discussions on interference among engineers refer to fracture “hits” and fracture-fluid production that suddenly appears at offset producing wells. These are indications of communication, but do not necessarily imply that a strong connection will be maintained throughout the life of the wells.
This paper presents a rigorous procedure for correctly identifying interference by use of data acquired during a typical multiwell-pad-production scheme. First, the various mechanisms of interference are defined. Next, analytical simulations are run to reveal the expected behavior for interference through fractures and reservoir matrix. Data provided from an eight-well pad in the Horn River basin are then scoured, revealing evidence of interference between at least two wells. Through this exercise, a procedure is developed for identifying interference by searching for changes in buildup trends while wells are staggered on/off production. Finally, the data are history matched with numerical models to confirm the interference mechanism.
The procedure in this paper is designed to help production analysts diagnose interference and avoid common pitfalls. The work flow is generalized and can be applied to other multiwell-pad completions.
The installation of wind energy increased in the last twenty years, as its cost decreased, and it contributes to reducing GHG emissions. A race toward gigantism characterizes wind turbine development, primarily driven by offshore projects. The larger wind turbines are facing higher loads, and the imperatives of mass reduction make them more flexible. Size increase of wind turbines results in higher structural vibrations that reduce the lifetime of the components (blades, main shaft, bearings, generator, gearbox, etc.) and might lead to failure or destruction. This paper aims to present in detail the problems associated with wind turbine vibration and a thorough literature review of the different mitigation solutions. We explore the advantages, drawbacks, and challenges of the existing vibration control systems for wind turbines. These systems belong to six main categories, according to the physical principles used and how they operate to mitigate the vibrations. This paper offers a multi-criteria analysis of a vast number of systems in different phases of development, going from full-scale testing to prototype stage, experiments, research, and ideas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.