Productivity enhancement of tight carbonate reservoirs (permeability 1-3 md) is critical to deliver the mandated production and to achieve the overall recovery. However, productivity improvement with conventional acid stimulation is very limited and short-lived. Tight reservoirs development with down spacing and higher number of infill wells can increase the oil recovery. Nevertheless, poor vertical communication (Kv/Kh < 0.5) within the layered reservoir is still a challenge for productivity enhancement and needs to be improved. First time successful installation of fishbone stimulation technology at ADNOC Onshore targeted establishing vertical communication between layers, in addition to maximizing the reservoir contact. Furthermore this advanced stimulation technology connects the natural fractures within the reservoir, bypasses near well bore damage and allows the thin sub layers to produce. This technology requires running standard lower completion tubing with Fishbone subs preloaded with 40ft needles, and stimulation with rig on site. This paper presents the case study of the fishbone stimulation technology implemented at one of the tight-layered carbonate reservoir. A new development well from ADNOC Onshore South East field was selected for implementation of this technology. The well completion consisting of 4 ½ liner with 40 fishbone subs was installed, each sub containing four needles at 90 degrees phasing capable of penetrating the reservoir up to 40 ft. While rig on site, acid job was conducted for creating jetting effect to penetrate the needles into the formation. Upon completion of jetting operation, fishbone basket run cleaned the unpenetrated needles present in the liner to establish the accessibility up to the total depth. Overall, application of this technology improved the well production rate to 1600 BOPD compared to 400 BOPD of production from nearby wells in the same PAD and reservoir. In addition the productivity of the candidate well improved by 2.5 times with respect to near-by wells in the same PAD. Currently, long-term sustainability testing preparation is in progress. This paper provides the details of candidate selection, completion design, technology limitations, operational challenges, post job testing and lessons learned during pilot implementation. In summary, successful application of this technology is a game changer for tight carbonate productivity enhancement that improves the overall recovery along with optimizing the drilling requirements. Currently, preparation for implementation of 10 pilots in one of the asset at ADNOC Onshore fields is in progress.
Organically rich shale rocks represent a voluminous, long-term, global source of natural gas and could be referred to as shale gas. Unlike conventional gas reservoirs, shale gas reservoirs have very low effective porosity and permeability. Therefore, an evaluation of porosity in such a tight rock is a challenge. The Roseneath and Murtree shale formations in the Cooper Basin are believed to be potential shale gas reservoirs in SA. Core samples of Murteree and Roseneath carbonaceous shales from the Della–4 and Moomba–46 wells were collected to measure interstitial and intergranular porosity in these prospective shale gas reservoirs in the Nappamerri Trough. After initial preparation, the shale core samples were investigated to determine the pore size classification and effective free porosity using the mercury injection capillary pressure technique (MCIP). The focused ion beam/scanning electron microscopy (FIB/SEM) technique was then employed to obtain micro and nano scale images of the core samples. Then, helium porosimetry was used on the samples to measure their effective porosity. Finally, the pyknometry method was used on the crushed samples to measure their total intergranular porosity. MICP techniques revealed that the samples were mainly comprised of meso-porosity, with the pore throat diameters between 2–50 nanometres and an effective porosity of less than 2%. Helium porosimetry also showed an average porosity of less than 2%. Liquid pyknometry revealed an average absolute porosity of 30.5% for Murteree shale and 39% for the the Roseneath shale, which is much higher than the results from the MCIP technique and helium porosimetry. This is an indication of having very high isolated porosity and very low permeability. The findings were analysed and validated by the use of SEM images, displaying high amounts of isolated porosity, confirming the high porosity measurement from the pyknometry technique. The results achieved strongly emphasised that gas prone, over-mature, carbonaceous shales have very low effective but very high total porosity. Therefore, it is envisaged that total intergranular porosity holding compressed gas in over-mature source rocks cannot be evaluated using the helium porosimetry and mercury injection techniques. The pyknometry technique supported by the SEM images is an alternative method; however, this method can only measure total, rather than effective, porosity.
In this study field, the objective was to identify the causes of low resistivity pay that was limited towards the southwest of the field. Restricting the focus only on diagenesis has not yielded conclusive explanations to delineate the affected area. Alternatively, investigating the influence of structural evolution (folding and tilting) on hydrocarbon charging mechanism and diagenesis has significantly contributed to a reasonable explanation. This, in turn, can potentially impact decisions related to reservoir characterization and field development planning. The field has adequate coverage of data from vertical (appraisal and observers) and horizontal wells (producers and injectors). The approach of structural flattening at different time intervals was applied in understanding the structural evolution of the field as part of regional tectonic history of the area. The delineation of areas in different paleo-positions has helped in grouping Wells into categories for thorough investigation. Detailed analyses of conventional and advanced logs, and core data were performed which included: petrographic analysis, pore throat and bound water evaluation, and assessment of resistivity log signatures in reference to the paleo-positions of the Wells. The structural evolution and corresponding hydrocarbon charging mechanisms (drainage and imbibition) have influenced the reservoir hydrocarbon saturation in the field from northeast to southwest. The northeast tilting was triggered by Zagros loading, combined with thermal uplift associated with Red Sea opening. This resulted in imbibition in the extreme northeast and second phase of primary drainage in the extreme southwest of the field. As a result, the area that was previously in water leg during early Tertiary provided more exposure to diagenetic processes which enhanced the total porosity (up to 5p.u.) with high bound water and low resistivity pay. The areal coverage within water leg has been well defined in this study by evaluating the positions of paleo structural closures and hydrocarbon charging mechanisms. This would be useful in capturing diagenetic overprint in properties modeling as well as defining appropriate rock types for better saturation height function and volumetric estimations in this area. Consequently, the field development strategy was to develop the central area, in the first phase, since it was less affected by fluids saturation variations caused by the structural evolution. The study has provided improvement in reservoir characterization techniques for well placement and enhanced field development planning. The methodology and approach used in this study are usually applied, to some extent, during exploration stages or basin modeling at regional scale with limited data availability and it is not utilized enough for Well placement and reserves estimations in the development stage. The approach applied here, with substantial data availability and integration, can potentially help in making decisions in the early development stage, allow successful field commissioning, and achieve initial production performance and target plateau.
This paper highlights 3D reconstruction of the paleo-topography of the depositional environment for a Lower Cretaceous carbonate formation onshore Abu Dhabi using 3D seismic and well data. The reconstruction was carried out for two reasons: (1) to understand underlying geologic causes for anomalous lateral variations in pressure, production performance, and logged reservoir properties in the field and (2) to delineate geologic trends away from well control in order to guide further decisions on field development and reservoir management options. Present-day structure of the reservoir top is a high-relief elongated anticline that is open to neighboring giant oil fields. Known hydrocarbon contact is below structural spill-point between the field and its neighbors, however pressure and production data indicate that the field is isolated from its neighbors. No fault was seen on seismic separating the field from its neighbors, thus raising possibility of stratigraphic separation. Further, study on core samples indicated that reservoir quality is controlled by depositional facies and early diagenetic modifications thereof. Thus, reconstruction of paleo-structure was conceived as a means of understanding and delineating geologic drivers for lateral variations in reservoir quality. The reconstruction process relied on an integrated approach: combining information from seismic, well logs, sedimentology, and well test results. Sedimentology studies gave information on expected morphology of depositional environment and controlling factors for reservoir quality; seismic interpretation of structure and stratigraphy at several levels provided basis to understand present-day field architecture and structural evolution through geologic time; reconstruction of three-dimensional structure at time of deposition was achieved by means of restorative velocity models to translate input mapped surfaces to their approximate original morphologies; results validation was achieved by subjecting study outputs to conformance tests with independent data from well logs, pressure tests, production performance, and seismic attributes trends. After reconstruction carried out in this study, the present-day steep anticlinal structure at the target reservoir was translated to a gently dipping ramp with morphology that is consistent with interpreted environment of deposition from cores. Outputs were further validated by conformance of well data and seismic attribute trends with the paleo-structure. Anomalous lateral variations in reservoir properties measured in wells were found to be associated with possible tidal channels that were interpreted to have caused localized diagenetic changes. Thus, findings from the paleo-reconstruction study provided a geologically consistent framework to understand lateral variation in well results, and also provided basis to guide further field development and reservoir management decisions as intended at study inception. Although outputs from the paleo-reconstruction process used in this study were deemed to have given good results, potential pitfalls in applying the method are herein noted.
SummaryIn this study, we identify different controls on cementation in a chalk reservoir. Biot's coefficient, a measure of cementation, stiffness and strength in porous rocks, is calculated from logging data (bulk density and sonic Pwave velocity). We show that Biot's coefficient is correlated to the water saturation of the Kraka reservoir and is partly controlled by its stratigraphic sub-units. While the direct causal relationship between Biot's coefficient and water saturation cannot be extended for Biot's coefficient and porosity, a correlation is also identified between the two, implying that some degree of pore filling cementation occurred in Kraka (Alam, 2010). Lack of correlation between Biot's coefficient and Gamma Ray (GR) indicates that the small amount of clay present is generally located in the pore space, thus not contributing to frame stiffness. While there was no compositional control on cementation via clay, we could infer that stratigraphy impacts on the diagenetic process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.