In this work, the mechanical properties of nanoparticle-coated E-glass fibres were investigated for high-performance composites. Glass fibres were dip-coated in TiO2 solutions by varying the concentration of nanoparticles. Single-filament tensile test was performed on bare and coated fibres to understand the effects of nanoparticles and the concentration of solutions on the mechanical properties. The analysis was carried out using two-parametrical Weibull distribution, and the result indicates that the nanoparticle-coated glass fibres have a lower probability of failure than the bare fibres. The tensile strengths of the fibres were improved up to 7.31%, 11.71% and 9.67% by coating with 5%, 10% and 15% nanoparticle solutions, respectively. The nanoparticle-coating of glass fibres has positively affected the mechanical properties against fabrication-related surface defects. GRAPHICAL ABSTRACT
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.