Water quality monitoring, analysis, and prediction have emerged as important challenges in several uses of water in our life. Recent water quality problems have raised the need for artificial intelligence (AI) models for analyzing water quality, classifying water samples, and predicting water quality index (WQI). In this paper, a machine-learning framework has been proposed for classify drinking water samples (safe/unsafe) and predicting water quality index. The classification tier of the proposed framework consists of nine machine-learning models, which have been applied, tested, validated, and compared for classifying drinking water samples into two classes (safe/unsafe) based on a benchmark dataset. The regression tier consists of six regression models that have been applied to the same dataset for predicting WQI. The experimental results clarified good classification results for the nine models with average accuracy, of 94.7%. However, the obtained results showed the superiority of Random Forest (RF), and Light Gradient Boosting Machine (Light GBM) models in recognizing safe drinking water samples regarding training and testing accuracy compared to the other models in the proposed framework. Moreover, the regression analysis results proved the superiority of LGBM regression, and Extra Trees Regression models in predicting WQI according to training, testing accuracy, 0.99%, and 0.95%, respectively.Moreover, the mean absolute error (MAE) results proved that the same models achieved less error rate, 10% than other applied regression models. These findings have significant implications for the understanding of how novel deep learning models can be developed for predicting water quality, which is suitable for other environmental and industrial purposes.
Background Eye lesions, occur in nearly half of patients with Behçet’s Disease (BD), can lead to irreversible damage and vision loss; however, limited studies are available on identifying risk factors for the development of vision-threatening BD (VTBD). Using an Egyptian college of rheumatology (ECR)-BD, a national cohort of BD patients, we examined the performance of machine-learning (ML) models in predicting VTBD compared to logistic regression (LR) analysis. We identified the risk factors for the development of VTBD. Methods Patients with complete ocular data were included. VTBD was determined by the presence of any retinal disease, optic nerve involvement, or occurrence of blindness. Various ML-models were developed and examined for VTBD prediction. The Shapley additive explanation value was used for the interpretability of the predictors. Results A total of 1094 BD patients [71.5% were men, mean ± SD age 36.1 ± 10 years] were included. 549 (50.2%) individuals had VTBD. Extreme Gradient Boosting was the best-performing ML model (AUROC 0.85, 95% CI 0.81, 0.90) compared with logistic regression (AUROC 0.64, 95%CI 0.58, 0.71). Higher disease activity, thrombocytosis, ever smoking, and daily steroid dose were the top factors associated with VTBD. Conclusions Using information obtained in the clinical settings, the Extreme Gradient Boosting identified patients at higher risk of VTBD better than the conventional statistical method. Further longitudinal studies to evaluate the clinical utility of the proposed prediction model are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.