A new refined hyperbolic shear deformation theory (RHSDT), which involves only four unknown functions as against five in case of other shear deformation theories, is presented for the thermoelastic bending analysis of functionally graded sandwich plates. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The sandwich plate faces are assumed to have isotropic, two-constituent material distribution through the thickness, and the modulus of elasticity, Poisson's ratio of the faces, and thermal expansion coefficients are assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic ceramic material. Several kinds of sandwich plates are used taking into account the symmetry of the plate and the thickness of each layer. The influences played by the transverse shear deformation, thermal load, plate aspect ratio and volume fraction distribution are studied. Numerical results for deflections and stresses of functionally graded metal-ceramic plates are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of functionally graded plates.
This paper introduces the analytical solutions of complex behavior analysis utilizing high-order shear deformation plate theory of functionally graded FGM nano-plate content consisting of a mixture of metal and ceramics with porosity. To incorporate the small-scale effect, the non-local principle of elasticity is used. The impact of variance of material properties such as thickness-length ratio, aspect ratio, power-law exponent and porosity factor on natural frequencies of FG nano-plate is examined. Compared to those achieved from other researchers, the latest solutions are. Using the simulated displacements theory, equilibrium equations are obtained. Current solutions of the dimensionless frequency are compared with those of the finite element method. The effect of geometry, material variations of nonlocal FG nano-plates and the porosity factor on their natural frequencies are investigated in this review. The results are in good agreement with those of the literature.
The analysis of non-symmetric functionally graded sandwich plates under thermo-mechanical loading is developed using a novel hyperbolic shear deformation theory and considering thickness stretching effects. This theory accounts for adequate distribution of the transverse shear strains in the thickness of the plate and satisfies the traction free boundary conditions on the top and bottom surface of the plates, thus a shear correction factor is not required. The governing equations of equilibrium of non-symmetric functionally graded sandwich plates can be obtained using virtual work principle and the closed form solutions are obtained by using Navier technique. The accuracy of the present results is established by comparing those with well known trigonometric shear deformation theories. The results are presented for deflections and stresses of non-symmetric simply supported square plates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.