This paper presents a process for the estimation of tire-road forces, vehicle sideslip angle and wheel cornering stiffness. The method uses measurements (yaw rate, longitudinal/lateral accelerations, steering angle and angular wheel velocities) only from sensors which can be integrated or have already been integrated in modern cars. The estimation process is based on two blocks in series: the first block contains a sliding-mode observer whose principal role is to calculate tire-road forces, while in the second block an extended Kalman filter estimates sideslip angle and cornering stiffness. More specifically, this study proposes an adaptive tire-force model that takes variations in road friction into account. The paper also presents a study of convergence for the sliding-mode observer. The estimation process was applied and compared to real experimental data, in particular wheel force measurements. Experimental results show the accuracy and potential of the estimation process.
To verify the possibility that the pedunculopontine nucleus is a source of glutamatergic terminals in contact with midbrain dopaminergic neurons in the squirrel monkey, we used the anterograde transport of Phaseolus vulgaris-leucoagglutinin in combination with preembedding immunohistochemistry for tyrosine hydroxylase and for calbindin D-28k and postembedding immunocytochemistry for glutamate and for gamma-aminobutyric acid. Following tracer injections in the pedunculopontine nucleus, numerous anterogradely labeled fibers emerged from the injection sites to innervate densely the pars compacta of the substantia nigra and ventral tegmental area. The major type of labeled fibers were thin with multiple collaterals and varicosities that established intimate contacts with midbrain dopaminergic neurons. At the electron microscopic level, the anterogradely labeled boutons were medium sized (maximum diameter between 0.9 microns and 2.5 microns) and contained numerous round vesicles and mitochondria. Postembedding immunocytochemistry revealed that 40-60% of anterogradely labeled terminals were enriched in glutamate and formed asymmetric synapses with dendritic shafts of substantia nigra and ventral tegmental area neurons. In triple-immunostained sections, some of the postsynaptic targets to these terminals were found to be dopaminergic. In addition, 30-40% of the anterogradely labeled terminals in both regions displayed immunoreactivity for gamma-aminobutyric acid and, in some cases, formed symmetric synapses with dendritic shafts. In conclusion, our results provide the first ultrastructural evidence for the existence of synaptic contacts between glutamate-enriched terminals from the pedunculopontine nucleus and midbrain dopaminergic neurons in primates. Our results also show that the pedunculopontine nucleus is a potential source of gamma-aminobutyric acid input to this region. These findings suggest that the pedunculopontine nucleus may play an important role in the modulation of the activity of midbrain dopaminergic cells by releasing glutamate or gamma-aminobutyric acid as neurotransmitter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.