The role of iron anode on electrochemical dechlorination of aqueous trichloroethylene (TCE) is evaluated using batch mixed-electrolyte experiments. A significantly higher dechlorination rate, up to 99%, is reported when iron anode and copper foam cathodes are used. In contrast to the oxygen-releasing inert anode, the cast iron anode generates ferrous species, which regulate the electrolyte to a reducing condition (low ORP value) and favor the reduction of TCE. The main products of TCE electrochemical reduction on copper foam cathode include ethene and ethane. The ratio of these two hydrocarbons gases varied with the electrolyte ORP condition and current density as more ethane gas generates at more reducing electrolyte condition and at higher current condition. A pseudo-first order model is used to describe the degradation of TCE, the first order rate constant (k) increased with the current applied, but exhibits a negative relation with initial concentration. Depending on the current, electrolysis by iron anode causes a reduction in the ORP and an increase in the pH of the mixed electrolyte. Enhanced reaction rates in this investigation indicate that the electrochemical reduction using copper foam and iron anode may be a promising process for remediation of groundwater contaminated with chlorinated organic compounds.
Successful bioremediation of contaminated soils is controlled by the ability to deliver bioremediation additives, such as bacteria and/or nutrients, to the contaminated zone. Because hydraulic advection is not practical for delivery in clays, electrokinetic (EK) injection is an alternative for efficient and uniform delivery of bioremediation additive into low-permeability soil and heterogeneous deposits. EK–enhanced bioaugmentation for remediation of clays contaminated with chlorinated solvents is evaluated. Dehalococcoides (Dhc) bacterial strain and lactate ions are uniformly injected in contaminated clay and complete dechlorination of chlorinated ethene is observed in laboratory experiments. The injected bacteria can survive, grow, and promote effective dechlorination under EK conditions and after EK application. The distribution of Dhc within the clay suggests that electrokinetic transport of Dhc is primarily driven by electroosmosis. In addition to biodegradation due to bioaugmentation of Dhc, an EK-driven transport of chlorinated ethenes is observed in the clay, which accelerates cleanup of chlorinated ethenes from the anode side. Compared with conventional advection-based delivery, EK injection is significantly more effective forestablis hingmicrobial reductive dechlorination capacity in low-permeability soils.
A novel reactive electrochemical flow system consisting of iron anode and porous cathode is proposed for the remediation of mixture of contaminants in groundwater. The system consists of a series of sequentially arranged electrodes, a perforated iron anode, a porous copper cathode followed by a mesh-type mixed metal oxide anode. The iron anode generates ferrous species and a chemically reducing environment, the porous cathode provides a reactive electrochemically reducing barrier, and the inert anode provides proton and oxygen to neutralize the system. The redox conditions of the electrolyte flowing through this system can be regulated by controlling the distribution of the electric current. Column experiments are conducted to evaluate the process and study the variables. The electrochemical reduction on a copper foam cathode produced an electrode-based reductive potential capable of reducing TCE and nitrate. Rational electrodes arrangement, longer residence time of electrolytes and higher surface area of foam electrode improve the reductive transformation of TCE. More than 82.2% TCE removal efficiency is achieved for the case of low influent concentration (< 7.5 mg/L) and high current (> 45 mA). The ferrous species produced from the iron anode not only enhance the transformation of TCE on the cathode, but also facilitates transformation of other contaminants including dichromate, selenate and arsenite. Removal efficiencies greater than 80% are achieved for these contaminants from flowing contaminated water. The overall system, comprising the electrode-based and electrolyte-based barriers, can be engineered as a versatile and integrated remedial method for a relatively wide spectrum of contaminants and their mixtures.
Electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution is investigated in a closed, liquid-recirculation system. The anodic reaction of cast iron generates ferrous species, creating a chemically reducing electrolyte (negative ORP value). The reduction of TCE on the cathode surface is enhanced under this reducing electrolyte because of the absence of electron competition. In the presence of the iron anode, the performances of different cathodes are compared in a recirculated electrolysis system. The copper foam shows superior capability for dechlorination of aqueous TCE. Electrolysis by cast iron anode and copper foam cathode is further optimized though a multivariable experimental design and analysis. The conductivity of the electrolyte is identified as an important factor for both final elimination efficiency (FEE) of TCE and specific energy consumption. The copper foam electrode exhibits high TCE elimination efficiency in a wide range of initial TCE concentration. Under coulostatic conditions, the optimal conditions to achieve the highest FEE are 9.525 mm thick copper foam electrode, 40 mA current and 0.042 mol L−1 Na2SO4. This novel electrolysis system is proposed to remediate groundwater contaminated by chlorinated organic solvents, or as an improved iron electrocoagulation process capable of treating the wastewater co-contaminated with chlorinated compounds.
The performance of electrochemical remediation methods could be optimized by controlling the physicochemical conditions of the electrochemical redox system. The effects of anode type (reactive or inert), current density and electrolyte composition on the temporal changes in pH and redox potential of the electrolyte were evaluated in divided and mixed electrolytes. Two types of electrodes were used: iron as a reactive electrode and mixed metal oxide coated titanium (MMO) as an inert electrode. Electric currents of 15, 30, 45 and 60 mA (37.5 mA L−1, 75 mA L−1, 112.5 mA L−1 and 150 mA L−1) were applied. Solutions of NaCl, Na2SO4 and NaHCO3 were selected to mimic different wastewater or groundwater composition. Iron anodes resulted in highly reducing electrolyte conditions compared to inert anodes. Electrolyte pH was dependent on electrode type, electrolyte composition and current density. The pH of mixed-electrolyte was stable when MMO electrodes were used. When iron electrodes were used, the pH of electrolyte with relatively low current density (37.5 mA L−1) did not show significant changes but the pH increased sharply for relatively high current density (150 mA L−1). Sulfate solution showed more basic and relatively more reducing electrolyte condition compared to bicarbonate and chloride solution. The study shows that a highly reducing environment could be achieved using iron anodes in divided or mixed electrolytes and the pH and redox potential could be optimized by using appropriate current and polarity reversal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.