Highlights New challenges in MSW management in Tehran after the COVID-19 pandemic was studied. Over 5.5 millions of PPEs are being daily discarded in Tehran during COVID-19. Hospital wastes are being disposed of without undergoing any treatment in Tehran. Landfilling of MSW has increased by 34.7% after the outbreak of COVID-19. Secondary contagion from improper management of MSW is probable in Tehran.
To date, many developing countries such as Iran have almost completely abandoned the idea of decontaminating oil-polluted soils due to the high costs of conventional (physical/chemical) soil remediation methods. Phytoremediation is an emerging green technology that can become a promising solution to the problem of decontaminating hydrocarbon-polluted soils. Screening the capacity of native tolerant plant species to grow on aged, petroleum hydrocarbon-contaminated soils is a key factor for successful phytoremediation. This study investigated the effect of hydrocarbon pollution with an initial concentration of 40 000 ppm on growth characteristics of sorghum (Sorghum bicolor) and common flax (Linum usitatissumum). At the end of the experiment, soil samples in which plant species had grown well were analyzed for total petroleum hydrocarbons (TPHs) removal by GC-FID. Common flax was used for the first time in the history of phytoremediation of oil-contaminated soil. Both species showed promising remediation efficiency in highly contaminated soil; however, petroleum hydrocarbon contamination reduced the growth of the surveyed plants significantly. Sorghum and common flax reduced TPHs concentration by 9500 and 18500 mg kg‑1, respectively, compared with the control treatment.
The COVID-19 pandemic have brought several environmental problems worldwide, among which management of municipal solid wastes (MSW) is of great importance due to the effects of solid wastes on soil, air and water resources. This research focused on the emerging challenges in MSW management in Tehran, the capital of Iran, during the COVID-19 pandemic. Tehran has been experiencing higher generation of MSW during the pandemic. Extensive use of personal protective equipments increased textile and plastic wastes considerably. On average, more than 4.5 million pieces of facemasks have been daily discarded by Tehranian residents during the COVID-19 pandemic. Generation of hospital wastes in Tehran also increased by 17.6-61.8% during the pandemic. Legal source separation and recycling programs are still suspended, though waste collection procedure in Tehran has not been subjected to significant changes after the outbreak of the Coronavirus. Hospital wastes, which had been partially separated and treated, are now being collected altogether and landfilled. Waste incineration and composting have been ceased completely; therefore landfilling of MSW has increased by 35% and opted as the only disposal option in Tehran during the COVID-19 outbreak. This research represents a baseline to devise proper urban waste management strategies in developing countries during the COVID-19 pandemic.
The feasibility of using wood-derived biochar (BC) to remove Pb, Mn, and Cu from landfill leachate was investigated and modeled in this study. BC was produced under the pyrolytic temperature of 740 °C. The effect of contact time, BC dosage and particle size on adsorption of the heavy metals onto BC was examined. BC was used in two forms i.e., pulverized (PWB) and crushed (CWB) to evaluate the effect of BC particle size on adsorption characteristics. The kinetics of Pb, Mn, and Cu adsorption onto PWB and CWB were assessed using the pseudo second-order and Elovich models, where both applied models could well describe the adsorption kinetics. Removal efficiencies of the heavy metals were increases by 1.2, 1.4, and 1.6 times, respectively, for Pb, Mn, and Cu, when PWB content of the leachate increased from 0.5 to 5 g L− 1. Equilibrium adsorption capacity of the heavy metals onto BC in leachate system was evaluated using the Langmuir, non-linearized Freundlich, linearized Freundlich, and Temkin isotherms and found to have the following order for PWB: Non-linearized Freundlich > Temkin > Langmuir > Linearized Freundlich. The Langmuir and linearized Freundlich models could not adequately represent adsorption of the heavy metals onto BC, especially for CWB. The highest removal of 88% was obtained for Pb, while the greatest adsorption intensity was found to be 1.58 mg g− 1 for Mn. Using the non-linearized Freundlich isotherm significantly reduced adsorption prediction error. The adsorption affinity of PWB for Pb, Mn, and Cu was greater than that of CWB in all treatments. Wood-derived BC is suggested to be used for the removal of heavy metals from landfill leachate as an economical adsorbent.
Problem statement: Turbid waters, containing colloidal particles, are normally treated by coagulation-flocculation followed by clarification. Ferric chloride and alum, which are the most common types of coagulants in water treatment plants of Iran as well as many other countries, were investigated with the aim of determining their capabilities to reduce turbidity of drinking water. Turbidity was added as kaolin. Optimization of coagulation process may assure removal of turbidity to a level below water quality standards in most cases. Approach: In this study, the effectiveness of aluminum sulfate and ferric chloride was evaluated at different pH values and coagulant dosage to find optimal operational conditions for low to high turbidity waters. The influence of lime, as a coagulant aid, on coagulation process was also studied. A set of jar test experiments was conducted to find the optimal pH and coagulant dosage. Results: Results demonstrated that coagulation process can assure turbidity removal from low to medium turbidity waters effectively, using relatively low levels of aluminum sulfate and ferric chloride (10-20 mg Lâ1). Turbidity removal efficiency still remained high when the initial turbidities of water were increased to 500 and 1000 NTU. Conclusion/Recommendations: Results showed that turbidity removal is dependent on pH, coagulant dosage, as well as initial turbidity of water for both used coagulants. The highest turbidity removal efficiency was within 82.9-99.0% for alum and 92.9-99.4% for ferric chloride over the applied range of turbidity. Turbidity removal efficiency was higher for ferric chloride compared to aluminum sulfate at optimum conditions. Both applied coagulants demonstrated promising performance in turbidity removal from water. The results of the current study can be used as a baseline data for drinking water treatment facilities which uses these two types of coagulants
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.