Current discoveries of different forms of carbon nanostructures have motivated research on their applications in various fields. They hold promise for applications in medicine, gene, and drug delivery areas. Many different production methods for carbon nanotubes (CNTs) have been introduced; functionalization, filling, doping, and chemical modification have been achieved, and characterization, separation, and manipulation of individual CNTs are now possible. Parameters such as structure, surface area, surface charge, size distribution, surface chemistry, and agglomeration state as well as purity of the samples have considerable impact on the reactivity of carbon nanotubes. Otherwise, the strength and flexibility of carbon nanotubes make them of potential use in controlling other nanoscale structures, which suggests they will have a significant role in nanotechnology engineering.
Nanoparticles are the simplest form of structures with sizes in the nanometer (nm) range. In principle any collection of atoms bonded together with a structural radius of < 100 nm can be considered nano particles. Nanotechnology offers unique approaches to probe and control a variety of biological and medical processes that occur at nanometer scales, and is expected to have a revolutionary impact on biology and medicine. Among the approaches for exploiting nanotechnology in medicine, nanoparticles offer some unique advantages as sensing, image enhancement, and delivery agents. Several varieties of nanoparticles with biomedical relevance are available including, polymeric nanoparticles, metal nanoparticles, liposomes, micelles, quantum dots, dendrimers, and nanoassemblies. To further the application of nanoparticles in disease diagnosis and therapy, it is important that the systems are biocompatible and capable of being functionalized for recognition of specific target sites in the body after systemic administration. In this review, we have explained some important applications of gold nanoparticles.
Electrospinning uses an electrical charge to draw very fine (typically on the micro or nano scale) fibers from a liquid. Electrospinning or electrostatic spinning shares characteristics of both electrospraying and conventional solution dry spinning of fibers. The method does not need the use of coagulation chemistry or high temperatures to produce solid threads from solution. This makes the process particularly suited for the production of fibers using large and complex molecules. Because the full potential of biomaterials being used in various applications, field of nanofibers have involved considerable interest in biotechnology and medicine and there has been fast development in this area in recent years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.