Single-junction solar cells are the most available in the market and the most simple in terms of the realization and fabrication comparing to the other solar devices. However, these single-junction solar cells need more development and optimization for higher conversion efficiency. In addition to the doping densities and compromises between different layers and their best thickness value, the choice of the materials is also an important factor on improving the efficiency. In this paper, an efficient single-junction solar cell model of GaAs is presented and optimized. In the first step, an initial model was simulated and then the results were processed by an algorithm code. In this work, the proposed optimization method is a genetic search algorithm implemented in Matlab receiving ATLAS data to generate an optimum output power solar cell. Other performance parameters such as photogeneration rates, external quantum efficiency (EQE), and internal quantum efficiency (EQI) are also obtained. The simulation shows that the proposed method provides significant conversion efficiency improvement of 29.7% under AM1.5G illumination. The other results were J sc = 34.79 mA/cm 2 , V oc = 1 V, and fill factor (FF) = 85%.
The transceiver combination technology, of orthogonal frequency division multiplexing (OFDM) with multiple-input multiple-output (MIMO), provides a viable alternative to enhance the quality of service and simultaneously to achieve high spectral efficiency and data rate for wireless mobile communication systems. However, the high peak-to-average power ratio (PAPR) is the main concern that should be taken into consideration in the MIMO-OFDM system. Partial transmit sequences (PTSs) is a promising scheme and straightforward method, able to achieve an effective PAPR reduction performance, but it requires an exhaustive search to find the optimum phase factors, which causes high computational complexity increased with the number of subblocks. In this paper, a reduced computational complexity PTS scheme is proposed, based on a novel swarm intelligence algorithm, called fireworks algorithm (FWA). Simulation results confirmed the adequacy and the effectiveness of the proposed method which can effectively reduce the computation complexity while keeping good PAPR reduction. Moreover, it turns out from the results that the proposed PTS scheme-based FWA clearly outperforms the hottest and most important evolutionary algorithm in the literature like simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.