In mixture experiments, estimation of the parameters is generally based on ordinary least squares (OLS). However, in the presence of multicollinearity and outliers, OLS can result in very poor estimates. In this case, effects due to the combined outlier-multicollinearity problem can be reduced to certain extent by using alternative approaches. One of these approaches is to use biased-robust regression techniques for the estimation of parameters. In this paper, we evaluate various ridge-type robust estimators in the cases where there are multicollinearity and outliers during the analysis of mixture experiments. Also, for selection of biasing parameter, we use fraction of design space plots for evaluating the effect of the ridge-type robust estimators with respect to the scaled mean squared error of prediction. The suggested graphical approach is illustrated on Hald cement data set.
The Beta Regression Model (BRM) is commonly used when analyzing data in which the dependent variable is restricted to the interval [0,1] for example proportion or probability. The Maximum Likelihood Estimator (MLE) is used to estimate the regression coefficients of BRMs. But in the presence of multicollinearity, MLE is very sensitive to high correlation among the explanatory variables. For this reason, we introduce a new biased estimator called the Beta Liu-Type Estimator (BLTE) to overcome the multicollinearity problem in which the dependent variable has Beta distribution. The proposed estimator is a general estimator which includes other biased estimators, such as the Ridge Estimator, Liu Estimator, and the estimators with two biasing parameters as special cases in BRM. The performance of the proposed new estimator is compared to the MLE and other biased estimators depending on the Estimated Mean Squared Error (EMSE) criterion by conducting a simulation study. Finally, a numerical example is given to show the benefit of the proposed estimator over existing estimators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.