Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with expert's manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
To identify candidate causal genes of asthma, we performed a genome-wide association study (GWAS) in UK Biobank on a broad asthma definition (n = 56,167 asthma cases and 352,255 controls). We then carried out functional mapping through transcriptome-wide association studies (TWAS) and Mendelian randomization in lung (n = 1,038) and blood (n = 31,684) tissues. The GWAS reveals 72 asthma-associated loci from 116 independent significant variants (PGWAS < 5.0E-8). The most significant lung TWAS gene on 17q12-q21 is GSDMB (PTWAS = 1.42E-54). Other TWAS genes include TSLP on 5q22, RERE on 1p36, CLEC16A on 16p13, and IL4R on 16p12, which all replicated in GTEx lung (n = 515). We demonstrate that the largest fold enrichment of regulatory and functional annotations among asthma-associated variants is in the blood. We map 485 blood eQTL-regulated genes associated with asthma and 50 of them are causal by Mendelian randomization. Prioritization of druggable genes reveals known (IL4R, TSLP, IL6, TNFSF4) and potentially new therapeutic targets for asthma.
This study identifies multiple novel loci as risk factors for PA and food allergy and establishes C11orf30 as a risk locus for both PA and food allergy. Multiple genes (C11orf30/EMSY, SKAP1, and CTNNA3) identified by this study are involved in epigenetic regulation of gene expression.
BackgroundMolecular signatures identified from high-throughput transcriptomic studies often have poor reliability and fail to reproduce across studies. One solution is to combine independent studies into a single integrative analysis, additionally increasing sample size. However, the different protocols and technological platforms across transcriptomic studies produce unwanted systematic variation that strongly confounds the integrative analysis results. When studies aim to discriminate an outcome of interest, the common approach is a sequential two-step procedure; unwanted systematic variation removal techniques are applied prior to classification methods.ResultsTo limit the risk of overfitting and over-optimistic results of a two-step procedure, we developed a novel multivariate integration method, MINT, that simultaneously accounts for unwanted systematic variation and identifies predictive gene signatures with greater reproducibility and accuracy. In two biological examples on the classification of three human cell types and four subtypes of breast cancer, we combined high-dimensional microarray and RNA-seq data sets and MINT identified highly reproducible and relevant gene signatures predictive of a given phenotype. MINT led to superior classification and prediction accuracy compared to the existing sequential two-step procedures.Conclusions
MINT is a powerful approach and the first of its kind to solve the integrative classification framework in a single step by combining multiple independent studies. MINT is computationally fast as part of the mixOmics R CRAN package, available at http://www.mixOmics.org/mixMINT/and http://cran.r-project.org/web/packages/mixOmics/.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-017-1553-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.