In this study, an end-to-end human iris recognition system is presented to automatically identify individuals for high level of security purposes. The deep learning technology based new 2D convolutional neural network (CNN) model is introduced for extracting the features and classifying the iris patterns. Firstly, the iris dataset is collected, preprocessed and augmented. The dataset are expanded and enhanced using data augmentation, histogram equalization (HE) and contrast-limited adaptive histogram equalization (CLAHE) techniques. Secondly, the features of the iris patterns were extracted and classified using CNN. The structure of CNN comprises of convolutional layers and ReLu layers for extracting the features, pooling layers for reducing the parameters, fully connected layer and Softmax layer for classifying the extracted features into N classes. For the training process and updating the weights, the backpropagation algorithm and adaptive moment estimation Adam optimizer are used. The experimental results carried out based on a graphics processing unit (GPU) and using Matlab. The overall training accuracy of the introduced system was 95.33% with a consumption time of 17.59 minutes for training set. While the testing accuracy 100% with a consumption time of 12 seconds. The introduced iris recognition system has been successfully applied.
The fingerprint identification is the most widely used authentication system. The fingerprint uniqueness for each human being provides error-free identification. However, during the scanning process of the fingerprint, the generated image using the fingerprint scanner may differ slightly during each scan. This paper proposes an efficient matching model for fingerprint authentication using deep learning based deep convolutional neural network (CNN or ConvNet). The proposed deep CNN consists of fifteen layers and is classified into two stages. The first stage is preparation stage which includes the fingerprint images collection, augmentation and pre-processing steps, while the second stage is the features extraction and matching stage. Regarding the implantation results, the proposed system provided the best matching for the given fingerprint features. The obtained training accuracy of the proposed model is 100% for training dataset and 100% for validating dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.