This study provides a comprehensive evaluation of a great variety of state-of-theart precipitation datasets against gauge observations over the Karun basin in southwestern Iran. In particular, we consider (a) gauge-interpolated datasets (GPCCv8, CRU TS4.01, PREC/L, and CPC-Unified), (b) multi-source products (PERSIANN-CDR, CHIRPS2.0, MSWEP V2, HydroGFD2.0, and SM2RAIN-CCI), and (c) reanalyses (ERA-Interim, ERA5, CFSR, and JRA-55). The spatiotemporal performance of each product is evaluated against monthly precipitation observations from 155 gauges distributed across the basin during the period 2000-2015. This way, we find that overall the GPCCv8 dataset agrees best with the measurements. Most datasets show significant underestimations, which are largest for the interpolated datasets. These underestimations are usually smallest at low altitudes and increase towards more mountainous areas, although there is large spread across the products. Interestingly, no overall performance difference can be found between precipitation datasets for which gauge observations from Karun basin were used, versus products that were derived without these measurements, except in the case of GPCCv8. In general, our findings highlight remarkable differences between state-of-the-art precipitation products over regions with comparatively sparse gauge density, such as Iran. Revealing the best-performing datasets and their remaining weaknesses, we provide guidance for monitoring and modelling applications which rely on high-quality precipitation input.
Abstract. Precipitation is a crucial variable for hydro-meteorological applications. Unfortunately, rain gauge measurements are sparse and unevenly distributed, which substantially hampers the use of in situ precipitation data in many regions of the world. The increasing availability of high-resolution gridded precipitation products presents a valuable alternative, especially over poorly gauged regions. This study examines the usefulness of current state-of-the-art precipitation data sets in hydrological modeling. For this purpose, we force a conceptual hydrological model with multiple precipitation data sets in >200 European catchments to obtain runoff and evapotranspiration. We consider a wide range of precipitation products, which are generated via (1) the interpolation of gauge measurements (E-OBS and Global Precipitation Climatology Centre (GPCC) V.2018), (2) data assimilation into reanalysis models (ERA-Interim, ERA5, and Climate Forecast System Reanalysis – CFSR), and (3) a combination of multiple sources (Multi-Source Weighted-Ensemble Precipitation; MSWEP V2). Evaluation is done at the daily and monthly timescales during the period of 1984–2007. We find that simulated runoff values are highly dependent on the accuracy of precipitation inputs; in contrast, simulated evapotranspiration is generally much less influenced in our comparatively wet study region. We also find that the impact of precipitation uncertainty on simulated runoff increases towards wetter regions, while the opposite is observed in the case of evapotranspiration. Finally, we perform an indirect performance evaluation of the precipitation data sets by comparing the runoff simulations with streamflow observations. Thereby, E-OBS yields the particularly strong agreement, while ERA5, GPCC V.2018, and MSWEP V2 show good performances. We further reveal climate-dependent performance variations of the considered data sets, which can be used to guide their future development. The overall best agreement is achieved when using an ensemble mean generated from all the individual products. In summary, our findings highlight a climate-dependent propagation of precipitation uncertainty through the water cycle; while runoff is strongly impacted in comparatively wet regions, such as central Europe, there are increasing implications for evapotranspiration in drier regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.