The optimal power flow (OPF) is a practical problem in a power system with complex characteristics such as a large number of control parameters and also multi-modal and non-convex objective functions with inequality and nonlinear constraints. Thus, tackling the OPF problem is becoming a major priority for power engineers and researchers. Many metaheuristic algorithms with different search strategies have been developed to solve the OPF problem. Although, the majority of them suffer from stagnation, premature convergence, and local optima trapping during the optimization process, which results in producing low solution qualities, especially for real-world problems. This study is devoted to proposing an effective hybridizing of whale optimization algorithm (WOA) and a modified moth-flame optimization algorithm (MFO) named WMFO to solve the OPF problem. In the proposed WMFO, the WOA and the modified MFO cooperate to effectively discover the promising areas and provide high-quality solutions. A randomized boundary handling is used to return the solutions that have violated the permissible boundaries of search space. Moreover, a greedy selection operator is defined to assess the acceptance criteria of new solutions. Ultimately, the performance of the WMFO is scrutinized on single and multi-objective cases of different OPF problems including standard IEEE 14-bus, IEEE 30-bus, IEEE 39-bus, IEEE 57-bus, and IEEE118-bus test systems. The obtained results corroborate that the proposed algorithm outperforms the contender algorithms for solving the OPF problem.
Moth-flame optimization (MFO) is a prominent problem solver with a simple structure that is widely used to solve different optimization problems. However, MFO and its variants inherently suffer from poor population diversity, leading to premature convergence to local optima and losses in the quality of its solutions. To overcome these limitations, an enhanced moth-flame optimization algorithm named MFO-SFR was developed to solve global optimization problems. The MFO-SFR algorithm introduces an effective stagnation finding and replacing (SFR) strategy to effectively maintain population diversity throughout the optimization process. The SFR strategy can find stagnant solutions using a distance-based technique and replaces them with a selected solution from the archive constructed from the previous solutions. The effectiveness of the proposed MFO-SFR algorithm was extensively assessed in 30 and 50 dimensions using the CEC 2018 benchmark functions, which simulated unimodal, multimodal, hybrid, and composition problems. Then, the obtained results were compared with two sets of competitors. In the first comparative set, the MFO algorithm and its well-known variants, specifically LMFO, WCMFO, CMFO, ODSFMFO, SMFO, and WMFO, were considered. Five state-of-the-art metaheuristic algorithms, including PSO, KH, GWO, CSA, and HOA, were considered in the second comparative set. The results were then statistically analyzed through the Friedman test. Ultimately, the capacity of the proposed algorithm to solve mechanical engineering problems was evaluated with two problems from the latest CEC 2020 test-suite. The experimental results and statistical analysis confirmed that the proposed MFO-SFR algorithm was superior to the MFO variants and state-of-the-art metaheuristic algorithms for solving complex global optimization problems, with 91.38% effectiveness.
Moth–flame optimization (MFO) is a prominent swarm intelligence algorithm that demonstrates sufficient efficiency in tackling various optimization tasks. However, MFO cannot provide competitive results for complex optimization problems. The algorithm sinks into the local optimum due to the rapid dropping of population diversity and poor exploration. Hence, in this article, a migration-based moth–flame optimization (M-MFO) algorithm is proposed to address the mentioned issues. In M-MFO, the main focus is on improving the position of unlucky moths by migrating them stochastically in the early iterations using a random migration (RM) operator, maintaining the solution diversification by storing new qualified solutions separately in a guiding archive, and, finally, exploiting around the positions saved in the guiding archive using a guided migration (GM) operator. The dimensionally aware switch between these two operators guarantees the convergence of the population toward the promising zones. The proposed M-MFO was evaluated on the CEC 2018 benchmark suite on dimension 30 and compared against seven well-known variants of MFO, including LMFO, WCMFO, CMFO, CLSGMFO, LGCMFO, SMFO, and ODSFMFO. Then, the top four latest high-performing variants were considered for the main experiments with different dimensions, 30, 50, and 100. The experimental evaluations proved that the M-MFO provides sufficient exploration ability and population diversity maintenance by employing migration strategy and guiding archive. In addition, the statistical results analyzed by the Friedman test proved that the M-MFO demonstrates competitive performance compared to the contender algorithms used in the experiments.
Moth-flame optimization (MFO) algorithm inspired by the transverse orientation of moths toward the light source is an effective approach to solve global optimization problems. However, the MFO algorithm suffers from issues such as premature convergence, low population diversity, local optima entrapment, and imbalance between exploration and exploitation. In this study, therefore, an improved moth-flame optimization (I-MFO) algorithm is proposed to cope with canonical MFO’s issues by locating trapped moths in local optimum via defining memory for each moth. The trapped moths tend to escape from the local optima by taking advantage of the adapted wandering around search (AWAS) strategy. The efficiency of the proposed I-MFO is evaluated by CEC 2018 benchmark functions and compared against other well-known metaheuristic algorithms. Moreover, the obtained results are statistically analyzed by the Friedman test on 30, 50, and 100 dimensions. Finally, the ability of the I-MFO algorithm to find the best optimal solutions for mechanical engineering problems is evaluated with three problems from the latest test-suite CEC 2020. The experimental and statistical results demonstrate that the proposed I-MFO is significantly superior to the contender algorithms and it successfully upgrades the shortcomings of the canonical MFO.
Many metaheuristic approaches have been developed to select effective features from different medical datasets in a feasible time. However, most of them cannot scale well to large medical datasets, where they fail to maximize the classification accuracy and simultaneously minimize the number of selected features. Therefore, this paper is devoted to developing an efficient binary version of the quantum-based avian navigation optimizer algorithm (QANA) named BQANA, utilizing the scalability of the QANA to effectively select the optimal feature subset from high-dimensional medical datasets using two different approaches. In the first approach, several binary versions of the QANA are developed using S-shaped, V-shaped, U-shaped, Z-shaped, and quadratic transfer functions to map the continuous solutions of the canonical QANA to binary ones. In the second approach, the QANA is mapped to binary space by converting each variable to 0 or 1 using a threshold. To evaluate the proposed algorithm, first, all binary versions of the QANA are assessed on different medical datasets with varied feature sizes, including Pima, HeartEW, Lymphography, SPECT Heart, PenglungEW, Parkinson, Colon, SRBCT, Leukemia, and Prostate tumor. The results show that the BQANA developed by the second approach is superior to other binary versions of the QANA to find the optimal feature subset from the medical datasets. Then, the BQANA was compared with nine well-known binary metaheuristic algorithms, and the results were statistically assessed using the Friedman test. The experimental and statistical results demonstrate that the proposed BQANA has merit for feature selection from medical datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.