Background Schizophrenia and especially deficit schizophrenia (DSCZ) are characterized by increased activity of neuroimmunotoxic pathways and a generalized cognitive decline (G-CoDe). There is no data on whether the interleukin (IL)-6/IL-23/T helper 17 (IL-6/IL-23/Th17)-axis is more associated with DSCZ than with non-deficit schizophrenia (NDSCZ) and whether changes in this axis are associated with the G-CoDe and the phenome (a factor extracted from all symptom domains) of schizophrenia. Methods This study included 45 DSCZ and 45 NDSCZ patients and 40 controls and delineated whether the IL-6/IL-23/Th17 axis, trace elements (copper, zinc) and ions (magnesium, calcium) are associated with DSCZ, the G-CoDe and the schizophrenia phenome. Results Increased plasma IL-23 and IL-6 levels were associated with Th17 upregulation, assessed as a latent vector (LV) extracted from IL-17, IL-21, IL-22, and TNF-α. The IL-6/IL-23/Th17-axis score, as assessed by an LV extracted from IL-23, IL-6, and the Th17 LV, was significantly higher in DSCZ than in NDSCZ and controls. We discovered that 70.7% of the variance in the phenome was explained by the IL-6/IL-23/Th17-axis (positively) and the G-CoDe and IL-10 (both inversely); and that 54.6% of the variance in the G-CoDe was explained by the IL-6/IL-23/Th17 scores (inversely) and magnesium, copper, calcium, and zinc (all positively). Conclusion The pathogenic IL-6/IL-23/Th17-axis contributes to the generalized neurocognitive deficit and the phenome of schizophrenia, especially that of DSCZ, due to its key role in peripheral inflammation and neuroinflammation and its consequent immunotoxic effects on neuronal circuits. These clinical impairments are more prominent in subjects with lowered IL-10, magnesium, calcium, and zinc.
Schizophrenia patients show increased disabilities and lower quality of life (DisQoL). Nevertheless, there are no data on whether the activation of the interleukin (IL)-6, IL-23, T helper (Th)-17 axis, and lower magnesium and calcium levels impact DisQoL scores. This study recruited 90 patients with schizophrenia (including 40 with deficit schizophrenia) and 40 healthy controls and assessed the World Health Association QoL instrument-Abbreviated version and Sheehan Disability scale, Brief Assessment of Cognition in Schizophrenia (BACS), IL-6, IL-23, IL-17, IL-21, IL-22, tumor necrosis factor (TNF)-α, magnesium and calcium. Regression analyses showed that a large part of the first factor extracted from the physical, psychological, social and environmental HR-QoL and interference with school/work, social life, and home responsibilities was predicted by a generalized cognitive deterioration (G-CoDe) index (a latent vector extracted from BACs scores), and the first vector extracted from various symptom domains (“symptomatome”), whereas the biomarkers had no effects. Partial Least Squares analysis showed that the IL6IL23Th17 axis and magnesium/calcium had highly significant total (indirect + direct) effects on HR-QoL/disabilities, which were mediated by G-CoDe and the symptomatome (a first factor extracted from negative and positive symptoms). The IL6IL23Th17 axis explained 63.1% of the variance in the behavioral-cognitive-psycho-social (BCPS) worsening index a single latent trait extracted from G-CoDe, symptomatome, HR-QoL and disability data. In summary, the BCPS worsening index is partly caused by the neuroimmunotoxic effects of the IL6IL23Th17 axis in subjects with lowered antioxidant defenses (magnesium and calcium), thereby probably damaging the neuronal circuits that may underpin deficit schizophrenia.
Schizophrenia patients show increased disabilities and lower quality of life (DisQoL). Nevertheless, there are no data whether, in schizophrenia, activation of the interleukin (IL)-6, IL-23, T helper (Th)-17 axis and lowered magnesium and calcium levels impact DisQoL scores. This study recruited 90 patients with schizophrenia (including 40 with deficit schizophrenia) and 40 healthy controls and assessed the World Health Association QoL instrument-Abbreviated version and Sheehan Disability scale, Brief Assessment of Cognition in Schizophrenia (BACS), IL-6, IL-23, IL-17, IL-21, IL-22, tumor necrosis factor (TNF)-α, magnesium and calcium. Regression analyses showed that a large part of the first factor extracted from the physical, psychological, social and environmental HR-QoL and interference with school/work, social life, and home responsibilities was predicted by a generalized cognitive deterioration (G-CoDe) index (a latent vector extracted from BACs scores), and the first vector extracted from various symptom domains (“symptomatome”), whereas the biomarkers had no effects. Partial Least Squares analysis showed that the IL6IL23Th17 axis and magnesium/calcium had highly significant total (indirect + direct) effects on HR-QoL/disabilities which were mediated by G-CoDe and the symptomatome (a first factor extracted from negative and positive symptoms). The IL6IL23Th17 axis explained 63.1% of the variance in a single latent trait extracted from G-CoDe, symptomatome, HR-QoL and disability data. The latter features are manifestations of a common core, namely the behavioral-cognitive-psycho-social worsening index, which is caused by the neuroimmunotoxic effects of the IL6IL23Th17 axis in subjects with lowered antioxidant defenses (magnesium and calcium) thereby producing damage to neuronal circuits underpinning deficit schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.