Background and objectiveInitial peripheral/central nerve injuries, such as chronic constriction injury (CCI)/spinal cord injury, are often compounded by secondary mechanisms, including inflammation and oxidative stress, which may lead to chronic neuropathic pain characterized by hyperalgesia or allodynia. On the other hand, exercise as a behavioral and non-pharmacological treatment has been shown to alleviate chronic neuropathic pain. Therefore, this study was conducted to examine whether or not exercise reduces neuropathic pain through modifying oxidative stress and inflammation in chronic constriction injury of the sciatic nerve.Materials and methodsWistar male rats weighing 200±20 g were randomly divided into five groups (normal, sham, CCI, pre-CCI exercise, and post-CCI exercise group). Sciatic nerve of anesthetized rats was loosely ligated to induce CCI, and they were then housed in separate cages. The rats ran on treadmill at a moderate speed for 3 weeks. Mechanical allodynia and thermal hyperalgesia were determined using von Frey filament and plantar test, respectively. Tumor necrosis factor-alpha (TNF-α) assayed in the cerebrospinal fluid, malondialdehyde, and total antioxidant capacity were measured in the serum using Western blot test, thiobarbituric acid, and ferric reducing ability of plasma (FRAP), respectively.ResultsThe mechanical allodynia (P=0.024) and thermal hyperalgesia (P=0.002) in the CCI group were higher than those in the sham group. Exercise after CCI reduced (P=0.004) mechanical allodynia and thermal hyperalgesia (P=0.025) compared with the CCI group. Moreover, the level of FRAP in the CCI group was (P=0.001) lower than that in the sham group, and post-CCI exercise reversed FRAP amount toward the control level (P=0.019). The amount of malondialdehyde did not differ between groups. Level of TNF-α increased in the CCI group (P=0.0002) compared with sham group and post-CCI exercise could reverse it toward the level of control (P=0.005).ConclusionPost CCI-exercise but not pre CCI-exercise reduces CCI-induced neuropathic pain. One of the possible involved mechanisms is increasing the total antioxidant capacity and reducing the amount of TNF-α.
Repetitive transcranial magnetic stimulation (rTMS) is a new method for treating many neurological conditions; however, the exact therapeutic mechanisms behind rTMS-induced plasticity are still unknown. Neural stem and progenitor cells (NS/PCs) are active players in brain regeneration and plasticity but their behavior in the context of rTMS therapy needs further elucidation. We aimed to evaluate the effects of rTMS on proliferation and differentiation of NS/PCs in the subventricular zone (SVZ) of adult mouse brain. Adult male mice (n=30) were divided into rTMS (1-Hz and 30-Hz) and sham groups and treated for 7 or 14 consecutive days. Harvested NS/PCs from the SVZ were cultured in the neurosphere assay for 8 days and the number and size of the resulting neurospheres as well as their in vitro differentiation capacity were evaluated. After one week of rTMS treatment at 1-Hz and 30-Hz compared with sham stimulation, the mean neurosphere forming frequency per brain was not different while this measure significantly increased after two weeks (P<0.05). The mean neurosphere diameter in 1-Hz treatment paradigm was significantly larger compared with sham stimulation at both 1 and 2 weeks. In contrast, 30-Hz treatment paradigm resulted in significantly larger neurospheres only after 2 weeks. Importantly, rTMS treatment at both frequencies increased neuronal differentiation of the harvested NS/PCs. Furthermore, one week in vitro rTMS treatment of NS/PCs with both 1-Hz and 30-Hz increased NS/PCs proliferation and neuronal differentiation. It is concluded that both 1-Hz and 30-Hz rTMS treatment increase NS/PCs proliferation and neuronal differentiation.
Phalaris minor (littleseed canary grass) is a major weed in wheat fields in some parts of Iran. Diclofop-methyl, fenoxaprop-P-ethyl, and clodinafop-propargyl are three acetyl coenzyme A carboxylase (ACCase)-inhibiting herbicides that are commonly used to control this grass in wheat fields.Thirty-four P. minor populations with suspected resistance to ACCase-inhibiting herbicides were sampled from wheat fields in the provinces of Fars and Golestan in Iran.The dose-response assays that were conducted under controlled greenhouse conditions indicated that 14 populations were resistant to fenoxaprop-P-ethyl, seven populations were resistant to both fenoxaprop-P-ethyl and diclofop-methyl, and three populations were resistant to fenoxaprop-P-ethyl, diclofop-methyl, and clodinafop-propargyl. These populations showed different levels of resistance to the applied herbicides, compared to the susceptible population. These results suggest that different mechanisms of resistance could be involved. The enzyme assay revealed that the existence of modified ACCase in the three most-resistant populations (AR, MR4, and SR3) is responsible for the resistance of these populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.