The structure and bonding of solid acetonitrile (CH₃CN) films on amorphous silica are studied, and chemical and physical processes under irradiation with 200 keV protons and 250-400 eV electrons are quantified using transmission infrared spectroscopy, reflection-absorption infrared spectroscopy and temperature-programmed desorption, with the assistance of basic computational chemistry and nuclear materials calculations. The thermal desorption profiles are found to depend strongly on the balance between CH₃CN-surface and CH₃CN-CH₃CN interactions, passing from a sub-monolayer regime (binding energy: 35-50 kJ mol⁻¹) to a multilayer regime (binding energy: 38.2±1.0 kJ mol⁻¹) via a fractional order desorption regime characteristic of islanding as the coverage increases. Calculations using the SRIM code reveal that the effects of the ion irradiation are dominated by electronic stopping of incident protons, and the subsequent generation of secondary electrons. Therefore, ion irradiation and electron irradiation experiments can be quantitatively compared. During ion irradiation of thicker CH₃CN films, a cross section for secondary electron-promoted chemical destruction of CH3CN of 4 (±1) × 10⁻¹⁸ cm² was measured, while electron-promoted desorption was not detected. A significantly higher cross section for electron-promoted desorption of 0.82-3.2 × 10⁻¹⁵ cm² was measured during electron irradiation of thinner CH₃CN films, while no chemical products were detected. The differences between the experimental results can be rationalized by recognizing that chemical reaction is a bulk effect in the CH₃CN film, whereas desorption is a surface sensitive process. In thicker films, electron-promoted desorption is expected to occur a rate that is independent of the film thickness; i.e. show zeroth-order kinetics with respect to the surface concentration.
The nonthermal desorption of water from ice films induced by photon and low energy electron irradiation has been studied under conditions mimicking those found in dense interstellar clouds. Water desorption following photon irradiation at 250 nm relies on the presence of an absorbing species within the H2O ice, in this case benzene. Desorption cross sections are obtained and used to derive first order rate coefficients for the desorption processes. Kinetic modeling has been used to compare the efficiencies of these desorption mechanisms with others known to be in operation in dense clouds. (C) 2010 American Vacuum Society. [DOI: 10.1116/1.3336466
Electron-promoted desorption (EPD) from compact amorphous solid water (c-ASW) has been studied. Low-energy electron bombardment with 200 to 300 eV electrons leads to H 2 O depletion as monitored by reflection-absorption infrared spectroscopy (RAIRS) of the remaining c-ASW film. Cross-sections for H 2 O depletion were calculated to be in the range 1.6±1.0 × 10 -16 to 5.2±3.0 × 10 -16 cm 2 . However, mass spectrometric measurements identify a major component of the desorbing material as H 2 , which appears with similar kinetics to those for H 2 O loss.Molecular H 2 O is observed as a minor desorption product in the gas phase.2
Reflection-absorption infrared spectroscopy is used to study the impact of low-energy electron irradiation of acetonitrile-containing ices, under conditions close to those in the dense star-forming regions in the interstellar medium. Both the incident electron energy and the surface coverage were varied. The experiments reveal that solid acetonitrile is desorbed from its ultrathin solid films with a cross section of the order of 10−17 cm2. Evidence is presented for a significantly larger desorption cross section for acetonitrile molecules at the water–ice interface, similar to that previously observed for the benzene–water system.
Experimental measurements on the thermal and non-thermal behaviour of water and other simple molecules, including organic compounds such as methanol and benzene, on model interstellar dust grain surfaces and on solid water surfaces using surface science 1 Page 1 of 61 ACS Paragon Plus Environment ACS Earth and Space Chemistry techniques and methodologies are reviewed. A simple qualitative model of the early stages mantle growth arising from a synthesis of the results of such investigations from our own laboratory and others is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.