A B S T R A C T Background:Chitosan is a naturally occurring biopolymer which has been widely used in a variety of biomedical applications including local antibiotic delivery due to its excellent mechanical properties, biodegradability and biocompatibility. Beads are spherical, porous carriers which are prepared from various materials including chitosan. Objectives: The current study aimed to fabricate a new controlled delivery system for local anti-infective treatment and to study its release behavior. Materials and Methods: Twenty beads were prepared from 1% or 2% chitosan solutions and immersed in vancomycin (VM) or teicoplanin (TN) solutions. The antibiotic release kinetics was determined by linear regression analysis supposing first order kinetics. Results: Immersion for 3 h resulted in significant increase in the total TN release that differed from 0.5 h of immersion, except for the 1% beads immersed in VM. Increasing the chitosan concentration significantly increased the total release and antibiotic load of beads. The release of TN was more delayed compared to that of VM, which allowed a gradual release beyond 3 days. The half-life (mean ± SEM) of both types of TNcontaining beads was significantly extended for 3 h immersion in comparison to 0.5 h immersion (26.1 ± 5.9 vs 10.9 ± 1.0 and 17.0 ± 2.1 vs 5.1 ± 1.9; P < 0.001). However, neither increasing the chitosan concentration, nor immersion time did result in any significant increase in the release of VM. Conclusions:The current study demonstrated an improved control of TN release impregnated in beads. It can be concluded that chitosan beads might be considered as a novel carrier for TN delivery to infected bone for local anti-infective therapy.
A B S T R A C T Background:Chitosan is a naturally occurring biopolymer which has been widely used in a variety of biomedical applications including local antibiotic delivery due to its excellent mechanical properties, biodegradability and biocompatibility. Beads are spherical, porous carriers which are prepared from various materials including chitosan. Objectives: The current study aimed to fabricate a new controlled delivery system for local anti-infective treatment and to study its release behavior. Materials and Methods: Twenty beads were prepared from 1% or 2% chitosan solutions and immersed in vancomycin (VM) or teicoplanin (TN) solutions. The antibiotic release kinetics was determined by linear regression analysis supposing first order kinetics. Results: Immersion for 3 h resulted in significant increase in the total TN release that differed from 0.5 h of immersion, except for the 1% beads immersed in VM. Increasing the chitosan concentration significantly increased the total release and antibiotic load of beads. The release of TN was more delayed compared to that of VM, which allowed a gradual release beyond 3 days. The half-life (mean ± SEM) of both types of TNcontaining beads was significantly extended for 3 h immersion in comparison to 0.5 h immersion (26.1 ± 5.9 vs 10.9 ± 1.0 and 17.0 ± 2.1 vs 5.1 ± 1.9; P < 0.001). However, neither increasing the chitosan concentration, nor immersion time did result in any significant increase in the release of VM. Conclusions:The current study demonstrated an improved control of TN release impregnated in beads. It can be concluded that chitosan beads might be considered as a novel carrier for TN delivery to infected bone for local anti-infective therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.