This work reports a noticeable advancement in CO2 capture using gas–liquid membrane contactors (GLMC) composed of super-fine poly(vinylidene fluoride) hollow fiber membranes (PVDF HFMs) incorporated with sub-layer large cavities.
In literature, liquid–liquid (L–L) phase separation has been widely adopted as the principle technique by which polymeric membranes are produced. However, the promotion of L–L phase separation as the means of controlling membrane morphology is still debatable. Thus, this work aims to introduce a facile and cost‐effective technique for controlling the morphology of poly(vinylidene fluoride) (PVDF) hollow fiber membranes (HFMs). The proposed technique is based on promotion of L–L phase separation which can be achieved through two different approaches: 1) reducing the distance between locations of dope and binodal curve through locating spinning dope on nonsolvent (water)/solvent (2‐pyrrolidone)/polymer (PVDF) ternary phase diagram by increasing of nonsolvent content and maintaining of polymer concentration at initial level; 2) simultaneous occurrence of thermally and nonsolvent induced phase separation (TNIPS). It is found that L–L phase separation promotion based on the above described approaches yields to PVDF HFM with partially double‐layered structure, enhanced mechanical properties, higher porosity, and smaller average pore radius with the potential to purify textile wastewater containing C.I. Disperse Violet 33. The proposed technique is advantageous due to lack of need for additives or post‐treatment process for HFM synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.