Ferroptosis is a type of programmed cell death induced by the accumulation of lipid peroxidation and lipid reactive oxygen species (ROS) in cells. It has been recently demonstrated that cancer cells are vulnerable to ferroptosis inducers (FIN). However, the therapeutic potential of ferroptosis inducers in prostate cancer in pre-clinical settings has not been explored. In this study, we demonstrate that mediators of ferroptosis SLC7A11, SLC3A2 and GPX4 are expressed in treatment-resistant prostate cancer. We further demonstrate that treatment-resistant prostate cancer cells are sensitive to two ferroptosis inducers, erastin and RSL3. Treatment with erastin and RSL3 led to a significant decrease in prostate cancer cell growth and migration in vitro and significantly delayed the tumor growth of treatment-resistant prostate cancer in vivo, with no measurable side effects. Combination of erastin or RSL3 with standard-of-care second-generation anti-androgens for advanced prostate cancer halted prostate cancer cell growth and migration in vitro and tumor growth in vivo. These results demonstrate the potential of erastin or RSL3 independently and in combination with standard-of-care second-generation anti-androgens as novel therapeutic strategies for advanced prostate cancer.
Resistance to androgen deprivation therapy, or castration-resistant prostate cancer (CRPC), is often accompanied by metastasis and is currently the ultimate cause of prostate cancer-associated deaths in men. Recently, secondary hormonal therapies have led to an increase of neuroendocrine prostate cancer (NEPC), a highly aggressive variant of CRPC. Here, we identify that high levels of cell surface receptor Trop2 are predictive of recurrence of localized prostate cancer. Moreover, Trop2 is significantly elevated in CRPC and NEPC, drives prostate cancer growth, and induces neuroendocrine phenotype. Overexpression of Trop2 induces tumor growth and metastasis while loss of Trop2 suppresses these abilities in vivo. Trop2-driven NEPC displays a significant up-regulation of PARP1, and PARP inhibitors significantly delay tumor growth and metastatic colonization and reverse neuroendocrine features in Trop2-driven NEPC. Our findings establish Trop2 as a driver and therapeutic target for metastatic prostate cancer with neuroendocrine phenotype and suggest that high Trop2 levels could identify cancers that are sensitive to Trop2-targeting therapies and PARP1 inhibition.
Microglial cells in the brain tumor microenvironment are associated with enhanced glioma malignancy. They persist in an immunosuppressive M2 state at the peritumoral site and promote the growth of gliomas. Here, we investigated the underlying factors contributing to the abolished immune surveillance. We show that brain tumors escape pro-inflammatory M1 conversion of microglia via CD74 activation through the secretion of the cytokine macrophage migration inhibitory factor (MIF), which results in a M2 shift of microglial cells. Interruption of this glioma-microglial interaction through an antibody-neutralizing approach or small interfering RNA (siRNA)-mediated inhibition prolongs survival time in glioma-implanted mice by reinstating the microglial pro-inflammatory M1 function. We show that MIF-CD74 signaling inhibits interferon (IFN)-γ secretion in microglia through phosphorylation of microglial ERK1/2 (extracellular signal-regulated protein kinases 1 and 2). The inhibition of MIF signaling or its receptor CD74 promotes IFN-γ release and amplifies tumor death either through pharmacological inhibition or through siRNA-mediated knockdown. The reinstated IFN-γ secretion leads both to direct inhibition of glioma growth as well as inducing a M2 to M1 shift in glioma-associated microglia. Our data reveal that interference with the MIF signaling pathway represents a viable therapeutic option for the restoration of IFN-γ-driven immune surveillance.
The glutamate transporter xCT (SCL7a11, system Xc-, SXC) is an emerging key player in glutamate/cysteine/glutathione homeostasis in the brain and in cancer. xCT expression correlates with the grade of malignancy. Here, we report on the use of the U.S. Food and Drug Administration and EMA-approved xCT inhibitor, sulfasalazine (SAS) in gliomas. SAS does not affect cell viability in gliomas at concentrations below 200 μM. At higher concentrations SAS becomes gliomatoxic. Mechanistically SAS inhibits xCT and induces ferroptotic cell death in glioma cells. There is no evidence for impact on autophagic flux following SAS application. However, SAS can potentiate the efficacy of the standard chemotherapeutic and autophagy-inducing agent temozolomide (Temcat, Temodal or Temodar®). We also investigated SAS in non-transformed cellular constituents of the brain. Neurons and brain tissue are almost non-responding to SAS whereas isolated astrocytes are less sensitive towards SAS toxicity compared to gliomas. In vivo SAS treatment does not affect experimental tumor growth and treated animals revealed comparable tumor volume as untreated controls. However, SAS treatment resulted in reduced glioma-derived edema and, hence, total tumor volume burden as revealed by T2-weighted magnetic resonance imaging. Altogether, we show that SAS can be utilized for targeting the glutamate antiporter xCT activity as a tumor microenvironment-normalizing drug, while crucial cytotoxic effects in brain tumors are minor.
The Plasticity Related Gene family covers five, brain-specific, transmembrane proteins (PRG1-5, also termed LPPR1-5) that operate in neuronal plasticity during development, aging and brain trauma. Here we investigated the role of the PRG family on axonal and filopodia outgrowth. Comparative analysis revealed the strongest outgrowth induced by PRG3 (LPPR1). During development, PRG3 is ubiquitously located at the tip of neuronal processes and at the plasma membrane and declines with age. In utero electroporation of PRG3 induced dendritic protrusions and accelerated spine formations in cortical pyramidal neurons. The neurite growth promoting activity of PRG3 requires RasGRF1 (RasGEF1/Cdc25) mediated downstream signaling. Moreover, in axon collapse assays, PRG3-induced neurites resisted growth inhibitors such as myelin, Nogo-A (Reticulon/RTN-4), thrombin and LPA and impeded the RhoA-Rock-PIP5K induced neurite repulsion. Transgenic adult mice with constitutive PRG3 expression displayed strong axonal sprouting distal to a spinal cord lesion. Moreover, fostered PRG3 expression promoted complex motor-behavioral recovery compared to wild type controls as revealed in the Schnell swim test (SST). Thus, PRG3 emerges as a developmental RasGRF1-dependent conductor of filopodia formation and axonal growth enhancer. PRG3-induced neurites resist brain injury-associated outgrowth inhibitors and contribute to functional recovery after spinal cord lesions. Here, we provide evidence that PRG3 operates as an essential neuronal growth promoter in the nervous system. Maintaining PRG3 expression in aging brain may turn back the developmental clock for neuronal regeneration and plasticity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.