Purpose This study aims to introduce a metal porous burner design. Literature is surveyed in a comprehensive manner to relate the current design with ongoing research. A demonstrative computational fluid dynamics (CFD) analysis is presented with projected flow conditions by means of a common commercial CFD code and turbulence model to show the flow-related features of the proposed burner. The porous metal burner has a novel design, and it is not commercially available. Design/methodology/approach Based on the field experience about porous burners, a metal, cylindrical, two-staged, homogenous porous burner was designed. Literature was surveyed to lay out research aspects for the porous burners and porous media. Three dimensional solid computer model of the burner was created. The flow domain was extracted from the solid model to use in CFD analysis. A commercial computational fluid dynamics code was utilized to analyze the flow domain. Projected flow conditions for the burner were applied to the CFD code. Results were evaluated in terms of homogenous flow distribution at the outer surface and flow mixing. Quantitative results are gathered and are presented in the present report by means of contour maps. Findings There aren’t any flow sourced anomalies in the flow domain which would cause an inefficient combustion for the application. An accumulation of gas is evident around the top flange of the burner leading to higher static pressure. Generally, very low pressure drop throughout the proposed burner geometry is found which is regarded as an advantage for burners. About 0.63 Pa static pressure increase is realized on the flange surface due to the accumulation of the gas. The passage between inner and outer volumes has a high impact on the total pressure and leads to about 0.5 Pa pressure drop. About 0.03 J/kg turbulent kinetic energy can be viewed as the highest amount. Together with the increase in total enthalpy, total amount of energy drawn from the flow is 0.05 J/kg. More than half of it spent through turbulence and remaining is dissipated as heat. Outflow from burner surface can be regarded homogenous though the top part has slightly higher outflow. This can be changed by gradually increasing pore sizes toward inlet direction. Research limitations/implications Combustion via a porous medium is a complex phenomenon since it involves multiple phases, combustion chemistry, complex pore geometries and fast transient responses. Therefore, experimentation is used mostly. To do a precise computational analysis, strong computational power, parallelizing, elaborate solid modeling, very fine meshes and small time steps and multiple models are required. Practical implications Findings in the present work imply that a homogenous gas outflow can be attained through the burner surfaces while very small pressure drop occurs leading to less pumping power requirement which is regarded as an advantage. Flow mixing is realizable since turbulent kinetic energy is distinguished at the interface surface between inner and outer volumes. The porous metal matrix burner offers fluid mixing and therefore better combustion efficiency. The proposed dimensions are found appropriate for real-world application. Originality/value Conducted analysis is for a novel burner design. There are opportunities both for scientific and commercial fields.
Abstract:A novel laboratory type condensing boiler was developed and a data acquisition system was set up in order to measure physical magnitudes related to the performance of the developed boiler. A closed circuit water circulation system was included in the experimental setup in order to circulate water as the energy carrier fluid. The boiler was operated according to the predetermined parameters and data acquisition system collect the data from electronic transmitters placed in the probes at the certain points in the experimental setup. All these results were presented in graphical form and they are interpreted in terms of physics related to the phenomena. The temperature increase in the boiler changes in a parabolic manner. At the beginning of the incident, convection dominantly occurs in respect of heat transfer even though radiation also exists. However radiation contributes more with elapsed time in the experiment and temperature rise curve deviates from the linear path. Numerical analyses can contribute to the findings as well as design parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.