The synthetic scalability of water harvesting metal–organic frameworks (MOFs) is crucial for making these promising materials accessible and widely available for use in household devices. Herein, we present a facile, sustainable, and high-yield synthesis method to produce a series of water-harvesting MOFs, including MOF-303, CAU-23, MIL-160, MOF-313, CAU-10, and Al-fumarate. Using readily available reactants and water as the only solvent, we were able to synthesize these materials at the kilogram scale in a 200 L batch reactor with yields of 84–96% and space-time yields of 238–305 kg/day/m3 under optimized reaction conditions. We also show that our procedure preserves framework crystallinity, porosity, and water-harvesting performance of the MOFs synthesized at scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.