In this research, the Boiti–Leon–Pempinelli (BLP) system was used to understand the physical meaning of exact and solitary traveling wave solutions. To establish modern exact results, considered. In addition, the results obtained were compared with those obtained by using other existing methods, such as the standard hyperbolic tanh function method, and the stability analysis for the results was discussed.
In the present paper, we apply the modern extension of the hyperbolic tanh function method of nonlinear partial differential equations (NLPDEs) of Kudryashov - Sinelshchikov (KS) equation for obtaining exact and solitary traveling wave solutions. Through our solutions, we gain various functions, such as, hyperbolic, trigonometric and rational functions. Additionally, we support our results by comparisons with other methods and painting 3D graphics of the exact solutions. It is shown that our method provides a powerful mathematical tool to find exact solutions for many other nonlinear equations in applied mathematics
http://dx.doi.org/10.25130/tjps.25.2020.039
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.