Unsteady 3D flow simulations on a twin-screw pump are performed for an assessment of the radial, circumferential and flank gap flow effect on the pump performance. By means of the overset grid technique rigid computational grids around the counter-rotating spindles yield a high cell quality and a high spatial resolution of the gap backflow down to the viscous sublayer in terms of y^+ < 1 . An optimization of the hole-cutting process is performed on a generic gap flow and transferred to the complex moving gaps in the pump. Grid independence is ensured, and conservation properties of the overset grid interpolation technique are assessed. Simulation results are validated against measured pump characteristics. Pump performance in terms of pressure build-up along the flow path through the spindles and volume flow rate is presented for a wide range of spindle speed and pump head. Flow rate fluctuations are found to depend on head but hardly on speed. By a profound assessment of the respective radial, circumferential and flank gap contribution to the total backflow, the importance of the most complex flank gap is pointed out. Backflow rate characteristics in dependence on the pump head and the pump speed are presented.
Twin-screw pumps due to their particular capabilities, offer u nique b enefits in comparison to other types of pumps. They can also recover wasted energy from the fluid system when run in a reversed way, i.e., in turbine mode. In this study, the possibility of benefiting twin-screw machines instead of conventional control valves in order to recover energy is investigated. Flow physics and energy recovery are analyzed experimentally and by 3D flow simulations in both, pump and turbine mode. Pump and turbine characteristics under different operating points are experimentally measured for low and high viscous fluids, i.e., water and oil, respectively. It is observed that for higher viscosity the dependency of volume flow rate on the pressure difference imposed on the pump is reduced. This observation indicates the significant effect of viscosity on the gap flow. Based on a simulation method by means of overset grid technique, unsteady 3D flow simulations with a high grid quality and a high spatial resolution particularly in gap regions in terms of y + < 1 are conducted and results are validated against experiments. The profound assessment of gap flow based on the simulation results shows that for highly viscous fluids such a soil, the rotational speed of spindles as well as the direction of rotation have a significant effect on gap flow characteristics and consequently on the pump and turbine performance. From the experiments, it is clarified that with a lower rotational speed of spindles and a higher pressure difference, a higher amount of energy up to about 50% of the fluid energy in the piping system can be recovered instead of being dissipated by a conventional control valve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.