In this paper, we present a new formulation for the Leontief production model using quantum calculus analogue. This formulation unifies discrete and continuous Leontief production models. Also, the classical Leontief production model is obtained by choosing q = 1. In addition, briefly give an introduction to quantum calculus. We present the formulation for continuous Leontief production models as well as quantum calculus models. Moreover, we establish the weak duality theorem and the strong duality theorem for quantum calculus analogue. Furthermore, using the objective functions for the primal and the dual quantum calculus models, we can easily obtain upper and lower bounds for the value of production at any production plan. Finally, examples are provided in order to illustrate the given results.
Stochastic chance-constrained optimization has a wide range of real-world applications. In some real-world applications, the decision-maker has to formulate the problem as a fractional model where some or all of the coefficients are random variables with joint probability distribution. Therefore, these types of problems can deal with bi-objective problems and reflect system efficiency. In this paper, we present a novel approach to formulate and solve stochastic chance-constrained linear fractional programming models. This approach is an extension of the deterministic fractional model. The proposed approach, for solving these types of stochastic decision-making problems with the fractional objective function, is constructed using the following two-step procedure. In the first stage, we transform the stochastic linear fractional model into two stochastic linear models using the goal programming approach, where the first goal represents the numerator and the second goal represents the denominator for the stochastic fractional model. The resulting stochastic goal programming problem is formulated. The second stage implies solving stochastic goal programming problem, by replacing the stochastic parameters of the model with their expectations. The resulting deterministic goal programming problem is built and solved using Win QSB solver. Then, using the optimal value for the first and second goals, the optimal solution for the fractional model is obtained. An example is presented to illustrate our approach, where we assume the stochastic parameters have a uniform distribution. Hence, the proposed approach for solving the stochastic linear fractional model is efficient and easy to implement. The advantage of the proposed approach is the ability to use it for formulating and solving any decision-making problems with the stochastic linear fractional model based on transforming the stochastic linear model to a deterministic linear model, by replacing the stochastic parameters with their corresponding expectations and transforming the deterministic linear fractional model to a deterministic linear model using the goal programming approach
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.