Nowadays, the use of distributed generation (DG) has increased because of benefits such as increased reliability, reduced losses, improvement in the line capacity, and less environmental pollution. The protection of microgrids, which consist of generation sources, is one of the most crucial concerns of basic distribution operators. One of the key issues in this field is the protection of microgrids against permanent and temporary failures by improving the safety and reliability of the network. The traditional method has a number of disadvantages. The reliability and stability of a power system in a microgrid depend to a great extent on the efficiency of the protection scheme. The application of Artificial Intelligence approaches was introduced recently in the protection of distribution networks. The fault detection method depends on differential relay based on Hilbert Space-Based Power (HSBP) theory to achieve fastest primary protection. It is backed up by a total harmonic distortion (THD) detection method that takes over in case of a failure in the primary method. The backup protection would be completely independent of the main protection. This is rarely attained in practice. This paper proposes a new algorithm to improve protection performance by adaptive network-based fuzzy inference system (ANFIS). The protection can be obtained in a novel way based on this theory. An advantage of this algorithm is that the protection system operates in fewer than two cycles after the occurrence of the fault. Another advantage is that the error detection is not dependent on the selection of threshold values, and all types of internal fault can identify and show that the algorithm operates correctly for all types of faults while preventing unwanted tripping, even if the data were distorted by current transformer (CT) saturation or by data mismatches. The simulation results show that the proposed circuit can identify the faulty phase in the microgrid quickly and correctly.Keywords: microgrid protection; adaptive network-based fuzzy inference system (ANFIS); Hilbert space-based power (HSBP); total harmonic distortion (THD)
This paper addresses the energy challenges related to the weak protection of renewable energy from reverse energy flow and expanding access to high-quality energy at the same time. Furthermore, this paper focuses on participation in the global transition to clean and low-carbon energy systems. Moreover, the increased demand for renewable energy seems to likely depend on whether it will be possible to greatly accelerate rates of progress toward increased efficiency, de-carbonization, greater generating diversity and lower pollutant emissions. This paper focuses on the protection of renewable energy technologies because they can be particularly attractive in dispersed areas and therefore, represent an important option for rural areas that lack electrical energy and distribution infrastructure. This paper proposes an improved protection device for a reverse power protection system using a new intelligent decision support system (IDSS). The IDSS is a support system for decision making, which makes extensive use of artificial intelligence (AI) techniques. The new method integrates the powerful specification for neural networks and fuzzy inference systems. The main advantage of this method is that it causes a decrease in the steady state oscillation for the reverse power relay. In addition, the proposed method has the ability to monitor extreme environmental conditions. The generator can be converted into a motor when the steam supply to a turbine is interrupted while the generator is still connected to a grid (or operates in parallel with another generator). As a result, the generator will become a synchronous motor and will actually cause significant mechanical damage. The reverse energy protection device should be included in the generator protection scheme. Smart grids use communication networks with sophisticated algorithms to ensure coordination between protection systems. ZigBee is a newly developed technology that can be used in wireless sensor networks (WSNs) to comply with the IEEE 802.15.4 standard. Low data rates, low power consumption and low cost are key features of ZigBee. The execution of star, tree and mesh topologies as well as support comparison is based on end-to-end delay, throughput, medium access control load in addition to sent and received traffic parameters. The use of star topology obtained a delay of 0.2 s. The simulation results show that this method is superior to the traditional method in terms of speed and steady-state oscillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.