Rechargeable aluminum batteries (Al batteries) can potentially be safer, cheaper, and deliver higher energy densities than those of commercial Li-ion batteries (LIBs). However, due to the very high charge density of Al cations and their strong interactions with the host lattice, very few cathode materials are known to be able to reversibly intercalate these ions. Herein, a rechargeable Al battery based on a two-dimensional (2D) vanadium carbide (VCT) MXene cathode is reported. The reversible intercalation of Al cations between the MXene layers is suggested to be the mechanism for charge storage. It was found that the electrochemical performance could be significantly improved by converting multilayered VCT particles to few-layer sheets. With specific capacities of more than 300 mAh g at high discharge rates and relatively high discharge potentials, VCT MXene electrodes show one of the best performances among the reported cathode materials for Al batteries. This study can lead to foundations for the development of high-capacity and high energy density rechargeable Al batteries by showcasing the potential of a large family of intercalation-type cathode materials based on MXenes.
Aim:The in vivo study on imprinting control region mice aims to show that magnetoelectric nanoparticles may directly couple the intrinsic neural activityinduced electric fields with external magnetic fields. Methods: Approximately 10 μg of CoFe 2 O 4 -BaTiO 3 30-nm nanoparticles have been intravenously administrated through a tail vein and forced to cross the blood-brain barrier via a d.c. field gradient of 3000 Oe/cm. A surgically attached two-channel electroencephalography headmount has directly measured the modulation of intrinsic electric waveforms by an external a.c. 100-Oe magnetic field in a frequency range of 0-20 Hz. Results: The modulated signal has reached the strength comparable to that due the regular neural activity.
Conclusion:The study opens a pathway to use multifunctional nanoparticles to control intrinsic fields deep in the brain.
It is a challenge to eradicate tumor cells while sparing normal cells. We used magnetoelectric nanoparticles (MENs) to control drug delivery and release. The physics is due to electric-field interactions (i) between MENs and a drug and (ii) between drug-loaded MENs and cells. MENs distinguish cancer cells from normal cells through the membrane’s electric properties; cancer cells have a significantly smaller threshold field to induce electroporation. In vitro and in vivo studies (nude mice with SKOV-3 xenografts) showed that (i) drug (paclitaxel (PTX)) could be attached to MENs (30-nm CoFe2O4@BaTiO3 nanostructures) through surface functionalization to avoid its premature release, (ii) drug-loaded MENs could be delivered into cancer cells via application of a d.c. field (~100 Oe), and (iii) the drug could be released off MENs on demand via application of an a.c. field (~50 Oe, 100 Hz). The cell lysate content was measured with scanning probe microscopy and spectrophotometry. MENs and control ferromagnetic and polymer nanoparticles conjugated with HER2-neu antibodies, all loaded with PTX were weekly administrated intravenously. Only the mice treated with PTX-loaded MENs (15/200 μg) in a field for three months were completely cured, as confirmed through infrared imaging and post-euthanasia histology studies via energy-dispersive spectroscopy and immunohistochemistry.
The results support the use of MENs as an effective drug delivery carrier for growth hormone-releasing hormone antagonists in the treatment of human glioblastomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.