This paper proposes a novel Extended Particle Swarm Optimization model (EPSO) that potentially enhances the search process of PSO for optimization problem. Evidently, gene expression profiles are significantly important measurement factor in molecular biology that is used in medical diagnosis of cancer types. The challenge to certain classification methodologies for gene expression profiles lies in the thousands of features recorded for each sample. A modified Wrapper feature selection model is applied with the aim of addressing the gene classification challenge by replacing its randomness approach with EPSO and PSO, respectively. EPSO is initializing the random size of the population and dividing them into two groups in order to promote the exploration and reduce the probability of falling in stagnation. Experimentally, EPSO has required less processing time to select the optimal features (average of 62.14 s) than PSO (average of 95.72 s). Furthermore, EPSO accuracy has provided better classification results
Cyberattacks have grown steadily over the last few years. The distributed reflection denial of service (DRDoS) attack has been rising, a new variant of distributed denial of service (DDoS) attack. DRDoS attacks are more difficult to mitigate due to the dynamics and the attack strategy of this type of attack. The number of features influences the performance of the intrusion detection system by investigating the behavior of traffic. Therefore, the feature selection model improves the accuracy of the detection mechanism also reduces the time of detection by reducing the number of features. The proposed model aims to detect DRDoS attacks based on the feature selection model, and this model is called a proactive feature selection model proactive feature selection (PFS). This model uses a nature-inspired optimization algorithm for the feature subset selection. Three machine learning algorithms, i.e., k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM), were evaluated as the potential classifier for evaluating the selected features. We have used the CICDDoS2019 dataset for evaluation purposes. The performance of each classifier is compared to previous models. The results indicate that the suggested model works better than the current approaches providing a higher detection rate (DR), a low false-positive rate (FPR), <span>and increased accuracy detection (DA).</span> The PFS model shows better accuracy to detect DRDoS attacks with 89.59%.
<span>This paper proposes the Particle Swarm Optimization model for enhancing the performance of an Artificial Neural Network. The learning process of Artificial Neural Network requires a long time to satisfy requirements because of processing complexity of the backpropagation algorithm that has been used in training Artificial Neural Network. It is a nonlinear complex model that can be used to configure and train an artificial neuron system. Both Artificial Neural Network and Particle Swarm Optimization model have been managed to solve and optimize several nonlinear models. Heuristic Optimization Weight of Artificial Neural Network (HNN) is a proactive metaheuristic model proposed to optimize the performance of Artificial Neural Network. The proposed system applies Particle Swarm Optimization to find the optimum weights of the Artificial Neural Network instead of using the Backpropagation algorithm. Experimentally, the proposed system has required less processing time (average of 76.91 Sec.) than Backpropagation (average of 93.32 Sec). Furthermore, It has provided better classification accuracy (start from 80% to 97.20%) comparing with Backpropagation (start from 75.32% to 94.32%).</span>
As the world becomes increasingly connected and the number of users grows exponentially and “things” go online, the prospect of cyberspace becoming a significant target for cybercriminals is a reality. Any host or device that is exposed on the internet is a prime target for cyberattacks. A denial-of-service (DoS) attack is accountable for the majority of these cyberattacks. Although various solutions have been proposed by researchers to mitigate this issue, cybercriminals always adapt their attack approach to circumvent countermeasures. One of the modified DoS attacks is known as distributed reflection denial-of-service attack (DRDoS). This type of attack is considered to be a more severe variant of the DoS attack and can be conducted in transmission control protocol (TCP) and user datagram protocol (UDP). However, this attack is not effective in the TCP protocol due to the three-way handshake approach that prevents this type of attack from passing through the network layer to the upper layers in the network stack. On the other hand, UDP is a connectionless protocol, so most of these DRDoS attacks pass through UDP. This study aims to examine and identify the differences between TCP-based and UDP-based DRDoS attacks.
<span>This paper proposes efficient models to help diagnose respiratory (SARS-COVID19) infections by developing new data descriptors for standard machine learning algorithms using X-Ray images. As COVID-19 is a significantly serious respiratory infection that might lead to losing life, artificial intelligence plays a main role through machine learning algorithms in developing new potential data classification. Data clustering by K-Means is applied in the proposed system advanced to the training process to cluster input records into two clusters with high harmony. Principle Component Analysis PCA, histogram of orientated gradients (HOG) and hybrid PCA and HOG are developed as potential data descriptors. The wrapper model is proposed for detecting the optimal features and applied on both clusters individually. This paper proposes new preprocessed X-Ray images for dataset featurization by PCA and HOG to effectively extract X-Ray image features. The proposed systems have potentially empowered machine learning algorithms to diagnose Pneumonia (SARS-COVID19) with accuracy up to %97.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.