We formulate and solve a finite horizon full balance sheet twomodes optimal switching problem related to trade-off strategies between expected profit and cost yields. Given the current mode, this model allows for either a switch to the other mode or termination of the project, and this happens for both sides of the balance sheet. A novelty in this model is that the related obstacles are nonlinear in the underlying yields, whereas, they are linear in the standard optimal switching problem. The optimal switching problem is formulated in terms of a system of Snell envelopes for the profit and cost yields which act as obstacles to each other. We prove existence of a continuous minimal solution of this system using an approximation scheme and fully characterize the optimal switching strategy.
We consider the problem of switching a large number of production lines between two modes, high production and low production. The switching is based on the optimal expected profit and cost yields of the respective production lines and considers both sides of the balance sheet. Furthermore, the production lines are all assumed to be interconnected through a coupling term, which is the average of all optimal expected yields. Intuitively, this means that each individual production line is compared to the average of all its peers which acts as a benchmark. Due to the complexity of the problem, we consider the aggregated optimal expected yields, where the coupling term is approximated with the mean of the optimal expected yields. This turns the problem into a twomode optimal switching problem of mean-field type, which can be described by a system of Snell envelopes where the obstacles are interconnected and nonlinear. The main result of the paper is a proof of a continuous minimal solution to the system of Snell envelopes, as well as the full characterization of the optimal switching strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.