Chatter has been recognized as major restriction for the increase in productivity of cold rolling processes, limiting the rolling speed for thin steel strips. It is shown that chatter has close relation with rolling conditions. So the main aim of this paper is to attain the optimum set points of rolling to achieve maximum rolling speed, preventing chatter to occur. Two combination methods were used for optimization. First method is done in four steps: providing a simulation program for chatter analysis, preparing data from simulation program based on central composite design of experiment, developing a statistical model to relate system tendency to chatter and rolling parameters by response surface methodology, and finally optimizing the process by genetic algorithm. Second method has analogous stages. But central composite design of experiment is replaced by Taguchi method and response surface methodology is replaced by neural network method. Also a study on the influence of the rolling parameters on system stability has been carried out. By using these combination methods, new set points were determined and significant improvement achieved in rolling speed.
Chatter, limiting the rolling speed for thin steel strips, has been identified as a serious limitation in increasing the efficiency of the cold rolling process. Many experimental investigations have led to the point that lubrication is one of the effective factors causing chatter. In this article, a new chatter model of the cold strip rolling with consideration of unsteady lubrication is proposed. The limiting shear stress concept and the variation of the lubricant viscosity with pressure are considered in this model. The results of the simulation are verified by comparing to experimental data. Also, a parametric study on the effect of some of the major parameters of rolling lubricant on the chatter critical speed is conducted. The results show that under the operating conditions of this paper, the limiting shear stress is an effective parameter.
Real time updating of rainfall-runoff (RR) models is traditionally performed by state-space formulation in the context of flood forecasting systems. In this paper, however, we examine applicability of generalized likelihood uncertainty estimation (GLUE) approach in real time modification of forecasts. Real time updating and parameter uncertainty analysis was conducted for Abmark catchment, a part of the great Karkheh basin in south west of Iran. A conceptualdistributed RR model, namely ModClark, was used for basin simulation, such that the basin's hydrograph was determined by the superposition of runoff generated by individual cells in a raster-based discretization. In real time updating of RR model by GLUE method, prior and posterior likelihoods were computed using forecast errors that were obtained from the results of behavioral models and real time recorded discharges. Then, prior and posterior likelihoods were applied to modify forecast confidence limits in each time step. Calibration of parameters was performed using historical data while distribution of parameters was modified in real time based on new data records. Two scenarios of rainfall forecast including prefect-rainfallforecast and no-rainfall-forecast were assumed in absence of a robust rainfall forecast model in the study catchment. The results demonstrated that GLUE application could offer an acceptable lead time for peak discharge forecast at the expense of high computational demand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.