Continuously operating thermo-electrochemical cells (thermocells) are of interest for harvesting low-grade waste thermal energy because of their potentially low cost compared with conventional thermoelectrics. Pt-free thermocells devised here provide an output power of 12 W m for an interelectrode temperature difference (ΔT) of 81 °C, which is sixfold higher power than previously reported for planar thermocells operating at ambient pressure.
Waste heat recovery with thermo-electrochemical cells is limited by their low power and conversion efficiencies. Here we explore ionic liquid electrolytes mixed with multiwall carbon nanotubes (MWCNTs) as alternative electrolytes for thermo-electrochemical cells. The results show that, upon addition of MWCNTs, the combination of interfacial polarization and ion pair dissociation reduces mass transfer resistances and enhances the power of thermo-electrochemical cells at low weight percentage of MWCNTs by up to 30%. This occurs in spite of reduced open circuit voltage due to percolated networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.