Nickel–titanium (NiTi) belongs to the group of shape-memory alloys (SMAs), which are characterized by flexibility and reversible deformability. Advanced techniques in 3D printing by selective laser-melting (SLM) process allow the manufacturing of complex patient-specific implants from SMAs. Osteosynthesis materials made of NiTi could be used for minimally invasive surgical approaches in oral- and maxillofacial surgery. However, the in vivo biocompatibility has not yet been fully investigated, especially in load-sharing and load-bearing implants. The aim of this study was to evaluate the in vivo biocompatibility of SLM-produced NiTi for intraosseous and subperiosteal applications. Test specimens were implanted into the frontonasal bone of ten miniature pigs. To assess peri-implant bone metabolism, fluorescent dye was administered after 2, 4, 6, 10, 12, and 14 weeks intraperitoneally. Specimens and the surrounding tissues were harvested after 8 and 16 weeks for histological analysis. While the NiTi implants presented a higher bone-to-implant contact ratio (BIC) after 8 than after 16 weeks (43.3 vs. 40.3%), the titanium implants had a significantly higher BIC after 16 weeks (33.6 vs. 67.7%). Histologically, no signs of peri-implant inflammation or foreign-body reaction were detectable. With respect to this preliminary study design, 3D-printed NiTi shows sufficient biocompatibility for intraosseous and subperiosteal implant placement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.