Carvacrol is a major natural constituent and is significantly present as an essential oil in aromatic plants and is well known for its numerous biological activities. Therapeutic properties of carvacrol have been demonstrated as anti‐oxidant, anticancer, diabetes prevention, cardioprotective, anti‐obesity, hepatoprotective and reproductive role, antiaging, antimicrobial, and immunomodulatory properties. The carvacrol biosynthesis has been mediated through mevalonate pathway. Carvacrol has the anticancer ability against malignant cells via decreasing the expressions of matrix metalloprotease 2 and 9, inducing apoptosis, enhancing the expression of pro‐apoptotic proteins, disrupting mitochondrial membrane, suppressing extracellular signal‐regulated kinase 1/2 mitogen‐activated protein kinase signal transduction, and also decreasing the phosphoinositide 3‐kinase/protein kinase B. It also decreased the concentrations of alanine aminotransferase, alkaline phosphatase and aspartate aminotransferase, and gamma‐glutamyl transpeptidase as well as also restored liver function, insulin level, and plasma glucose level. Carvacrol also has been found to exert antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Coagulase‐negative staphylococcus, Salmonella spp., Enterococcus sp. Shigella, and Escherichia coli. The current review article summarizes the health‐promoting perspectives of carvacrol through various pathways.
In the current study, Lactobacillus acidophilus was encapsulated in sodium alginate and whey protein isolate, with the addition of antacids CaCO 3 or Mg(OH) 2 . The obtained microgels were observed by scanning electron microscopy. Encapsulated and free probiotics were subjected to vitality assay under stressed conditions. Furthermore, dried apple snack was evaluated as a carrier for probiotics for 28 days. A significant ( p ≤ .05) effect of antacid with an encapsulating agent was observed under different stressed conditions. During exposure to simulated gastrointestinal conditions, there were observations of 1.24 log CFU and 2.17 log CFU, with corresponding 0.93 log CFU and 2.63 log CFU decrease in the case of SA + CaCO 3 and WPI + CaCO 3 respectively. Likewise, high viability was observed under thermal and refrigerated conditions for probiotics encapsulated with SA + CaCO 3 . In conclusion, the results indicated that alginate microgels with CaCO 3 are effective in prolonging the viability of probiotics under stressed conditions.
The use of proteinaceous material is desired as it forms a protective gelation around the active core, making it safe through temperature, pH, and O2 in the stomach and intestinal environment. During the boom of functional food utilization in this era of advancement in drug delivery systems, there is a dire need to find more protein sources that could be explored for the potential of being used as encapsulation materials, especially vegetable proteins. This review covers certain examples which need to be explored to form an encapsulation coating material, including soybeans (conglycinin and glycinin), peas (vicilin and convicilin), sunflower (helianthins and albumins), legumes (glutenins and albumins), and proteins from oats, rice, and wheat. This review covers recent interventions exploring the mentioned vegetable protein encapsulation and imminent projections in the shifting paradigm from conventional process to environmentally friendly green process technologies and the sensitivity of methods used for encapsulation. Vegetable proteins are easily biodegradable and so are the procedures of spray drying and coacervation, which have been discussed to prepare the desired encapsulated functional food. Coacervation processes are yet more promising in the case of particle size formation ranging from nano to several hundred microns. The present review emphasizes the significance of using vegetable proteins as capsule material, as well as the specificity of encapsulation methods in relation to vegetable protein sensitivity and the purpose of encapsulation accompanying recent interventions.
Despite significant advances in pathogen survival and food cleaning measures, foodborne diseases continue to be the main reason for hospitalization or other fatality globally. Conventional antibacterial techniques including pasteurization, pressurized preparation, radioactivity, as well as synthetic antiseptics could indeed decrease bacterial activity in nutrition to variable levels, despite their serious downsides like an elevated upfront outlay, the possibility of accessing malfunctions due to one corrosiveness, as well as an adverse effect upon those the foodstuffs' organoleptic properties and maybe their nutritional significance. Greatest significantly, these cleansing methods eliminate all contaminants, including numerous (often beneficial) bacteria found naturally in food. A huge amount of scientific publication that discussed the application of virus bioremediation to treat a multitude of pathogenic bacteria in meals spanning between prepared raw food to fresh fruit and vegetables although since initial idea through using retroviruses on meals. Furthermore, the quantity of widely viable bacteriophage‐containing medicines licensed for use in health and safety purposes has continuously expanded. Bacteriophage bio‐control, a leafy and ordinary technique that employs lytic bacteriophages extracted from the atmosphere to selectively target pathogenic bacteria and remove meaningfully decrease their stages meals, is one potential remedy that solves some of these difficulties. It has been suggested that applying bacteriophages to food is a unique method for avoiding bacterial development in vegetables. Because of their selectivity, security, stability, and use, bacteriophages are desirable. Phages have been utilized in post‐harvest activities, either alone or in combination with antimicrobial drugs, since they are effective, strain‐specific, informal to split and manipulate. In this review to ensure food safety, it may be viable to use retroviruses as a spontaneous treatment in the thread pollution of fresh picked fruits and vegetables, dairy, and convenience foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.