In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors. " In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function. KeywordsCooperative control, graph theory, infinite products, multiagent systems, switched systems This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/29 provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
In a recent Physical Review Letters article, Vicsek et al. propose a simple but compelling discrete-time model of n autonomous agents (i.e., points or particles) all moving in the plane with the same speed but with different headings. Each agent's heading is updated using a local rule based on the average of its own heading plus the headings of its "neighbors. " In their paper, Vicsek et al. provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function. KeywordsCooperative control, graph theory, infinite products, multiagent systems, switched systems This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/29 provide simulation results which demonstrate that the nearest neighbor rule they are studying can cause all agents to eventually move in the same direction despite the absence of centralized coordination and despite the fact that each agent's set of nearest neighbors change with time as the system evolves. This paper provides a theoretical explanation for this observed behavior. In addition, convergence results are derived for several other similarly inspired models. The Vicsek model proves to be a graphic example of a switched linear system which is stable, but for which there does not exist a common quadratic Lyapunov function.
This note analyzes the stability properties of a group of mobile agents that align their velocity vectors, and stabilize their inter-agent distances, using decentralized, nearest-neighbor interaction rules, exchanging information over networks that change arbitrarily (no dwell time between consecutive switches). These changes introduce discontinuities in the agent control laws. To accommodate for arbitrary switching in the topology of the network of agent interactions we employ nonsmooth analysis. The main result is that regardless of switching, convergence to a common velocity vector and stabilization of inter-agent distances is still guaranteed as long as the network remains connected at all times. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/279 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 5, MAY 2007 863 Technical Notes and Correspondence Flocking in Fixed and Switching NetworksHerbert G. Tanner, Ali Jadbabaie, and George J. PappasAbstract-This note analyzes the stability properties of a group of mobile agents that align their velocity vectors, and stabilize their inter-agent distances, using decentralized, nearest-neighbor interaction rules, exchanging information over networks that change arbitrarily (no dwell time between consecutive switches). These changes introduce discontinuities in the agent control laws. To accommodate for arbitrary switching in the topology of the network of agent interactions we employ nonsmooth analysis. The main result is that regardless of switching, convergence to a common velocity vector and stabilization of inter-agent distances is still guaranteed as long as the network remains connected at all times.
We develop a dynamic model of opinion formation in social networks when the information required for learning a parameter may not be at the disposal of any single agent. Individuals engage in communication with their neighbors in order to learn from their experiences. However, instead of incorporating the views of their neighbors in a fully Bayesian manner, agents use a simple updating rule which linearly combines their personal experience and the views of their neighbors. We show that, as long as individuals take their personal signals into account in a Bayesian way, repeated interactions lead them to successfully aggregate information and learn the true parameter. This result holds in spite of the apparent naïveté of agents' updating rule, the agents' need for information from sources the existence of which they may not be aware of, worst prior views, and the assumption that no agent can tell whether her own views or those of her neighbors are more accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.