With the expansion of the Internet and attractive social media infrastructures, people prefer to follow the news through these media. Despite the many advantages of these media in the news field, the lack of control and verification mechanism has led to the spread of fake news as one of the most critical threats to democracy, economy, journalism, health, and freedom of expression. So, designing and using efficient automated methods to detect fake news on social media has become a significant challenge. One of the most relevant entities in determining the authenticity of a news statement on social media is its publishers. This paper examines the publishers’ features in detecting fake news on social media, including
Credibility
,
Influence
,
Sociality
,
Validity
, and
Lifetime
. In this regard, we propose an algorithm, namely
CreditRank,
for evaluating publishers’ credibility on social networks. We also suggest a high accurate multi-modal framework, namely FR-Detect, for fake news detection using user-related and content-related features. Furthermore, a sentence-level convolutional neural network is provided to properly combine publishers’ features with latent textual content features. Experimental results show that the publishers’ features can improve the performance of content-based models by up to 16% and 31% in accuracy and F1, respectively. Also, the behavior of publishers in different news domains has been statistically studied and analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.