Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher's version if you wish to cite this paper.
Scientists at universities across Iraq are actively working to report actual incidents and accidents occurring in their laboratories, as well as structural improvements made to improve safety and security, to raise awareness and encourage openness, leading to widespread adoption of robust Chemical Safety and Security (CSS) practices. This manuscript highlights the importance of periodic maintenance on fume cupboards, and is the fourth in a series of five case studies describing laboratory incidents, accidents, and laboratory improvements. In this study, we describe a situation in which the ventilation capacity of the fume cupboard in the undergraduate chemistry laboratories at Al-Nahrain University had decreased to an unacceptable level. The CSS Committee investigated and found the ducting system had been blocked by plastic sheets and dead birds. All the ducts have since been cleaned, and four extra ventilation fans have been installed to further increase ventilation capacity. By openly sharing what happened along with the lessons learned from the accident, we hope to minimize the possibility of another researcher being injured in a similar incident in the future.
Compared to linear analogs, hyperbranched polymers (HBPs) have gotten much attention in the last decade because of their intrinsic globular topologies and distinctive features like low viscosity, high solubility, and a high degree of functionality. In this work, four types of hyperbranched polyester polymer HBPs have been synthesized using the A2+B3 polycondensation methodology. Firstly, the starting material B3 monomer (Pyrimidine-2,4,6-triol) has been synthesized using urea and malonic acid with the presence of sodium Na as the catalyst for the reaction. Secondly, four types of materials (tartaric acid TA, adipic acid AD, maleic acid MA, and phthalic anhydride PA) as A2 monomers were added to the starting material B3 monomer in an oil bath to prepare the four types of HBP. The chemical structure of HBPs was characterized by FTIR, and 1H-NMR. The molecular weight of the prepared HBPs was characterized by gel permeation chromatography GPC, and thermal properties were characterized by differential scanning calorimetry DSC and thermal gravimetric analysis TGA. FTIR results showed that there are new bands, such as C-O-C between A2 and B3 monomers, as indicated by 1H-NMR. In addition, GPC shows that the prepared polymers have a narrow molecular weight distribution with good thermal stability, as indicated by DSC and TGA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.