Novel approaches for the generation of more effective vaccines for HIV-1 are of significant importance. In this report we analyze the immunogenicity and efficacy of an HIV-1 DNA vaccine encoding env, rev and gag/pol in a chimpanzee model system. The immunized animals developed specific cellular and humoral immune responses. Animals were challenged with a heterologous chimpanzee titered stock of HIV-1 SF2 virus and followed for 48 weeks after challenge. Polymerase chain reaction coupled with reverse transcription (RT-PCR) results indicated infection in the control animal, whereas those animals vaccinated with the DNA constructs were protected from the establishment of infection. These studies serve as an important benchmark for the use of DNA vaccine technology for the production of protective immune responses.
Although vesicular stomatitis virus (VSV) neurovirulence and pathogenicity in rodents have been well studied, little is known about VSV pathogenicity in non-human primates. To address this question, we measured VSV viremia, shedding, and neurovirulence in macaques. Following intranasal inoculation, macaques shed minimal recombinant VSV (rVSV) in nasal washes for 1 day post-inoculation; viremia was not detected. Following intranasal inoculation of macaques, wild type (wt) VSV, rVSV, and two rVSV-HIV vectors showed no evidence of spread to CNS tissues. However, macaques inoculated intrathalamically with wt VSV developed severe neurological disease. One of four macaques receiving rVSV developed clinical and histological signs similar to the wt group, while the remaining three macaques in this group and all of the macaques in the rVSV-HIV vector groups showed no clinical signs of disease and reduced severity of histopathology compared to the wt group. The implications of these findings for rVSV vaccine development are discussed.
Except for ribavirin, no other antiviral drugs for treating hantaviral diseases have been identified. It is well established that ribavirin will inhibit the production of infectious Hantaan virus (HTNV); however, its mechanism of action is unknown. To characterize the inhibitory effect of ribavirin on HTNV, the levels of viral RNAs, proteins, and infectious particles were measured for 3 days posttreatment of HTNV-infected Vero E6 cells. HTNV-infected cells treated with ribavirin showed a slight reduction in the levels of cRNA, viral RNA, and mRNA populations on the first day postinfection. The amount of cRNA and viral RNA increased to that observed for untreated HTNV-infected cells on day 2, whereas mRNA levels were more greatly reduced on days 2 and 3. Despite the finding of S-segment mRNA, albeit low, three of the viral proteins-nucleocapsid (N) protein and glycoproteins G1 and G2-could not be detected by immunohistochemistry in ribavirin-treated cells. To test the hypothesis that these effects were caused by incorporation of ribavirin into nascent RNA and a resultant "error catastrophe" was occurring, we cloned and sequenced the S-segment cRNA/mRNA from ribavirin-treated or untreated cells from day 3. We found a high mutation frequency (9.5/1,000 nucleotides) in viral RNA synthesized in the presence of ribavirin. Hence, the transcripts produced in the presence of the drug were not functional. These results suggest that ribavirin's mechanism of action lies in challenging the fidelity of the hantavirus polymerase, which causes error catastrophe.Hantaviruses, which are endemic in most regions of the world, persistently infect murid rodents and are shed through rodent excreta (20). Transmission of hantaviruses from rodent hosts to humans causes two illnesses, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome. Hantaan virus (HTNV), carried by Apodemus agrarius, produces one of the more severe HFRS illnesses caused by the Old World hantaviruses, causing death in 5 to 15% of the cases (14, 15). HTNV infections cause a renal dysfunction with fever, hemorrhaging, cardiovascular instability, and shock. Ribavirin (1--D-ribofuranosyl-1,2,4-triazole-3-carboxamide) is the only antiviral drug shown to have efficacy against HFRS in clinical trials (11). Ribavirin has been tested for its effectiveness in clinical trials with patients suspected to have hantavirus pulmonary syndrome; however, its therapeutic benefits are still not known (2).Ribavirin has a broad spectrum of antiviral activity against both RNA and DNA viruses. Its mechanism of action, however, has been difficult to elucidate, primarily because of its pleiotropic effects (10, 17). Ribavirin 5Ј-monophosphate resembles GMP and can decrease cellular GTP pools due to the inhibition of the enzyme inosine monophosphate dehydrogenase dehydrogenase; however, this decrease does not completely account for the observed antiviral activity. Inhibitory effects have also been noted on the capping (9) and translation efficiency (23) of viral mRNA, a...
An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV-1) [1,2,3,10,11,12]. Sera from non-human primates immunized with DNA vectors that express the envelope proteins from HIV-1 contain antibodies specific to the HIV-1 envelope. These sera also neutralize HIV-1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.
Cytotoxic T lymphocyte (CTL) activity and CD4+ helper T cell responses to the hepatitis B virus (HBV) core antigen (HBcAg) have been implicated in clearance of acute and chronic HBV infections. We showed that intramuscular injections of a novel recombinant retroviral vector expressing an HBcAg-neomycin phosphotransferase II (HBc-NEO) fusion protein induces HBc/eAg-specific antibodies and CD4+ and CD8+ T cell responses in mice and rhesus monkeys. We have now immunized three chronically infected chimpanzees, each with 10(10) CFU of nonreplicating retroviral vector particles expressing the HBc-NEO fusion protein. Of two immunized chimpanzees examined for CTL responses, one developed HBcAg-specific CTLs and showed marginal, transient elevations of alanine aminotransferase (ALT) levels following injection. However, both chimpanzees remained positive for serum HBeAg, negative for anti-HBe antibody by conventional assays, and displayed no change in HBV viral load throughout the study. In contrast, the third chimpanzee exhibited a traditional seroconversion evidenced by a loss of serum HBeAg and the subsequent emergence of anti-HBe antibodies within 24 weeks after the first injection. Simultaneously, two transient ALT flares and a significant decrease in the serum HBV DNA levels were noted. Despite its limitations, the present study demonstrates (1) the safety of treatment with high titers of retroviral vector in chimpanzees, (2) the capability of a retroviral vector expressing HBcAg to stimulate immune responses in HBV chronic carrier chimpanzees, and (3) that retroviral vector immunization may be therapeutically beneficial in the treatment of chronic HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.