Catastrophic optical mirror damage (COMD) limits the output power and reliability of lasers diodes (LDs). Laser selfheating together with facet absorption of output power cause the facet to reach a critical temperature (Tc), resulting in COMD and irreversible device failure. The self-heating of the laser contributes significantly to the facet temperature, but it has not been addressed so far. We implement a multi-section waveguide method where the heat is separated from reaching the output facet by exploiting an electrically isolated window. The laser waveguide is divided into two electrically isolated laser and transparent window sections. The laser section is pumped at high current levels to achieve laser output, and the passive waveguide is biased at low injection currents to obtain a transparent waveguide with negligible heat generation. Using this design, we demonstrate facet temperatures lower than the junction temperature of the laser even at high output power operation. While standard LDs show COMD failures, the multi-section waveguide LDs are COMD-free. Our technique and results provide a pathway for high-reliability LDs, which would find diverse applications in semiconductor lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.