Cisplatin (CDDP) is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ) against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg−1 body weight i.p., single dose); group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day); group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA) and glutathione (GSH) levels, glutathione S-transferase (GST), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA), elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.
The present study aimed to investigate the protective effect of Spirulina platensis (SP) on gentamicin sulphate (GS)-induced changes in the levels of lipid peroxidation and endogenous antioxidants in the kidney of rats. Sprague-Dawley rats were treated in separate groups as follows for 7 consecutive days: control (C), gentamicin sulphate (100 mg/kg i.p.) (GS), Spirulina platensis (1000 mg/kg orally) (SP) and Spirulina platensis (1000 mg/kg orally) plus gentamicin sulphate (100 mg/kg i.p.) (SP + GS). The degree of protection was evaluated by determining the effects of Spirulina platensis on malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPX) and nitric oxide (NO), and plasma creatinine and urea levels were estimated in kidney homogenates to evaluate antioxidant activity, and the kidney was histologically examined as well. Spirulina platensis elicited significant nephroprotective activity by decreasing lipid peroxidation (MDA) and elevated the levels of GSH, SOD, GPX, NO, creatinine and urea. Furthermore, these biochemical observations were supplemented by histological examination of the rat kidneys. In conclusion, the present study indicates a very important role of reactive oxygen species (ROS) and the relation to renal dysfunction and point to the therapeutic potential of Spirulina platensis in gentamicin sulphate induced nephrotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.