Abstract. In this work, a mixture of Elzaki transform and projected di¤erential transform method is applied to solve a nonlinear wave-like equations with variable coe¢ cients. Nonlinear terms can be easily manipulated by using the projected di¤erential transformation method. The method gives the results show that the proposed method is very e¢ cient, simple and can be applied to other applications.
In this paper, we propose a new approximate method, namely fractional natural decomposition method (FNDM) in order to solve a certain class of nonlinear time-fractional wave-like equations with variable coefficients. The fractional natural decomposition method is a combined form of the natural transform method and the Adomian decomposition method. The nonlinear term can easily be handled with the help of Adomian polynomials which is considered to be a clear advantage of this technique over the decomposition method. Some examples are given to illustrate the applicability and the easiness of this approach.
The objective of this study is to present a new modification of the reduced differential transform method (MRDTM) to find an approximate analytical solution of a certain class of nonlinear fractional partial differential equations in particular, nonlinear time-fractional wave-like equations with variable coefficients. This method is a combination of two different methods: the Shehu transform method and the reduced differential transform method. The advantage of the MRDTM is to find the solution without discretization, linearization or restrictive assumptions. Three different examples are presented to demonstrate the applicability and effectiveness of the MRDTM. The numerical results show that the proposed modification is very effective and simple for solving nonlinear fractional partial differential equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.