BackgroundHemorrhagic shock followed by resuscitation is conceived as an insult frequently induces a systemic inflammatory response syndrome and oxidative stress that results in multiple-organ dysfunction syndrome including acute lung injury. MK-886 is a leukotriene biosynthesis inhibitor exerts an anti inflammatory and antioxidant activity.ObjectivesThe objective of present study was to assess the possible protective effect of MK-886 against hemorrhagic shock-induced acute lung injury via interfering with inflammatory and oxidative pathways.Materials and methodsEighteen adult Albino rats were assigned to three groups each containing six rats: group I, sham group, rats underwent all surgical instrumentation but neither hemorrhagic shock nor resuscitation was done; group II, Rats underwent hemorrhagic shock (HS) for 1 hr then resuscitated with Ringer's lactate (1 hr) (induced untreated group, HS); group III, HS + MK-886 (0.6 mg/kg i.p. injection 30 min before the induction of HS, and the same dose was repeated just before reperfusion period). At the end of experiment (2 hr after completion of resuscitation), blood samples were collected for measurement of serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). The trachea was then isolated and bronchoalveolar lavage fluid (BALF) was carried out for measurement of leukotriene B4 (LTB4), leukotriene C4 (LTC4) and total protein. The lungs were harvested, excised and the left lung was homogenized for measurement of malondialdehyde (MDA) and reduced glutathione (GSH) and the right lung was fixed in 10% formalin for histological examination.ResultsMK-886 treatment significantly reduced the total lung injury score compared with the HS group (P < 0.05). MK-886 also significantly decreased serum TNF-α & IL-6; lung MDA; BALF LTB4, LTC4 & total protein compared with the HS group (P < 0.05). MK-886 treatment significantly prevented the decrease in the lung GSH levels compared with the HS group (P < 0.05).ConclusionsThe results of the present study reveal that MK-886 may ameliorate lung injury in shocked rats via interfering with inflammatory and oxidative pathways implicating the role of leukotrienes in the pathogenesis of hemorrhagic shock-induced lung inflammation.
The results of the present study reveal that montelukast may ameliorate lung injury in shocked rats by interfering with inflammatory and oxidative pathways, implicating the role of leukotrienes in the pathogenesis of haemorrhagic shock-induced lung inflammation.
This article is an experimental study of the efficiency after fire exposure of slurry infiltrated fiber concrete (SIFCON) columns. The aim of this paper is to present a comprehensive study of the fire effect on the stiffness, ductility, and energy absorption capacity of axially loaded SIFCON columns and to inspect the effect of hollow ratio and cross section shape on the energy dissipation ability, ductility, and stiffness features of the post-fire behavior of these columns. Hybrid fibers were used to cast SIFCON columns with 6% fiber ratio (3% hooked end fiber + 3% straight micro fiber). The results showed that the cube compressive strength decreased by 25.1% and 53% when exposed to fire at a temperatures of 600 and 900 C, respectively. The results obtained revealed that after exposure to fire, the indices values of displacement ductility are not strongly impaired and it has been shown that the assessment of the energy dissipation ability is more relevant in this situation. Whereafter fire exposure at 600 C, the SIFCON columns lost about 11%-31% of the energy absorption capacity and about 39%-57% after fire exposure at 900 C. In comparison, after fire exposure, the secant and initial stiffness greatly degraded and the reduction percentages became higher with a rise in fire temperature from 600 to 900 C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.