Abstract-Exploration of an unknown environment is a fundamental concern in mobile robotics. This paper presents an approach for cooperative multi-robot exploration, fire searching and mapping in an unknown environment. The proposed approach aims to minimize the overall exploration time, making it possible to localize fire sources in an efficient way. In order to achieve this goal, the robots should cooperate in an effective way, so they can individually and simultaneously explore different areas of the environment while they identify fire sources. The proposed approach employs a decentralized frontier based exploration method which evaluates the cost-gain ratio to navigate to target way-points. The target way-points are obtained by an A* search variant algorithm. The potential field method is used to control the robots motion while avoiding obstacles. When a robot detects a fire, it estimates the flame's position by triangulation. The communication between the robots is done in a decentralized control way where they share the necessary data to generate the map of the environment and to perform cooperative actions in a behavioral decision making way. This paper presents simulation and experimental results of the proposed exploration and fire search method and concludes with a discussion of the obtained results and future improvements.
Abstract-We propose three modeling methods using a mobile sensor network to generate high spatio-temporal resolution air pollution maps for urban environments. In our deployment in Lausanne (Switzerland), dedicated sensing nodes are anchored to the public buses and measure multiple air quality parameters including the Lung Deposited Surface Area (LDSA), a state of the art metric for quantifying human exposure to ultrafine particles. In this paper, our focus is on generating LDSA maps. In particular, since the sensor network coverage is spatially and temporally dynamic, we leverage models to estimate the values for the locations and times where the data are not available. We first discretize the area topologically based on the street segments in the city and we then propose the following three prediction models: i) a log-linear regression model based on nine meteorological (e.g., temperature and precipitations) and gaseous (e.g., NO2 and CO) explanatory variables measured at two static stations in the city, ii) a novel network-based log-linear regression model that takes into account the LDSA values of the most correlated streets and also the nine explanatory variables mentioned above, iii) a novel Probabilistic Graphical Model (PGM) in which each street segment is considered as one node of the graph, and inference on conditional joint probability distributions of the nodes results in estimating the values in the nodes of interest. More than 44 millions of geo-and time-stamped LDSA measurements (i.e., more than 14 months of real data) are used in this paper to evaluate the proposed modeling approaches in various time resolutions (hourly, daily, weekly and monthly). The results show that the three approaches bring significant improvements in R 2 , RMSE and FAC metrics compared to a baseline KNearest Neighbor method.
This paper presents a cooperative distributed approach for searching odor sources in unknown structured environments with multiple mobile robots . While searching and exploring the environment, the robots independently generate on-line local topological maps and by sharing them with each other they construct a global map. The proposed method is a decentralized frontier based algorithm enhanced by a cost/utility evaluation function that considers the odor concentration and airflow at each frontier. Therefore, frontiers with higher probability of containing an odor source will be searched and explored first. The method also improves path planning of the robots for exploration process by presenting a priority policy. Since there is no global positioning system and each robot has its own coordinate reference system for its localization, this paper uses topological graph matching techniques for map merging. The proposed method was tested in both simulation and real world environments with different number of robots and different scenarios. The search time, exploration time, complexity of the environment and number of double-visited map nodes were investigated in the tests. The experimental results validate the functionality of the method in different configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.