We introduce and present the fundamentals of stress-localization concept to minimize adhesion of ice or other contaminants on a surface.
Scale formation is a common problem in a wide range of industries such as oil and gas, water desalination, and food processing. Conventional solutions for this problem including mechanical removal and chemical dissolution are inefficient, costly, and sometimes environmentally hazardous. Surface modification approaches have shown promises to address this challenge. However, these approaches suffer from intrinsic existence of solid-liquid interfaces leading to high rate of scale nucleation and high adhesion strength of the formed scale. Here, we report a new surface called magnetic slippery surface in two forms of Newtonian fluid (MAGSS) and gel structure (Gel-MAGSS). These surfaces provide a liquid-liquid interface to elevate the energy barrier for scale nucleation and minimize the adhesion strength of the formed scale on the surface. Performance of these new surfaces in both static and dynamic (under fluid flow) configurations is examined. These surfaces show superior antiscaling properties with an order of magnitude lower scale accretion compared to the solid surfaces and offer longevity and stability under high shear flow conditions. We envision that these surfaces open a new path to address the scale problem in the relevant technologies.
Evaporation is a fundamental and core phenomenon in a broad range of disciplines including power generation and refrigeration systems, desalination, electronic/photonic cooling, aviation systems, and even biosciences. Despite its importance, the current theories on evaporation suffer from fitting coefficients with reported values varying in a few orders of magnitude. Lack of a sound model impedes simulation and prediction of characteristics of many systems in these disciplines. Here, we studied evaporation at a planar liquid-vapor interface through a custom-designed, controlled, and automated experimental setup. This experimental setup provides the ability to accurately probe thermodynamic properties in vapor, liquid, and close to the liquid-vapor interface. Through analysis of these thermodynamic properties in a wide range of evaporation mass fluxes, we cast a predictive model of evaporation based on nonequilibrium thermodynamics with no fitting parameters. In this model, only the interfacial temperatures of liquid and vapor phases along with the vapor pressure are needed to predict evaporation mass flux. The model was validated by the reported study of an independent research group. The developed model provides a foundation for all liquid-vapor phase change studies including energy, water, and biological systems.
Advancement in high-performance photonics/electronics devices has boosted generated thermal energy, making thermal management a bottleneck for accelerated innovation in these disciplines. Although various methods have been used to tackle the thermal management problem, evaporation with nanometer fluid thickness is one of the most promising approaches for future technological demands. Here, we studied thin-film evaporation in nanochannels under absolute negative pressure in both transient and steady-state conditions. We demonstrated that thin-film evaporation in nanochannels can be a bubble-free process even at temperatures higher than boiling temperature, providing high reliability in thermal management systems. To achieve this bubble-free characteristic, the dimension of nanochannels should be smaller than the critical nucleolus dimension. In transient evaporative conditions, there is a plateau in the velocity of liquid in the nanochannels, which limits the evaporative heat flux. This limit is imposed by liquid viscous dissipation in the moving evaporative meniscus. In contrast, in steady-state condition, unprecedented average interfacial heat flux of 11 ± 2 kW cm–2 is achieved in the nanochannels, which corresponds to liquid velocity of 0.204 m s–1. This ultrahigh heat flux is demonstrated for a long period of time. The vapor outward transport from the interface is both advective and diffusion controlled. The momentum transport of liquid to the interface is the limiting physics of evaporation at steady state. The developed concept and platform provide a rational route to design thermal management technologies for high-performance electronic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.