Object detection is a challenging task in visual understanding domain, and even more so if the supervision is to be weak. Recently, few efforts to handle the task without expensive human annotations is established by promising deep neural network. A new architecture of cascaded networks is proposed to learn a convolutional neural network (CNN) under such conditions. We introduce two such architectures, with either two cascade stages or three which are trained in an end-to-end pipeline. The first stage of both architectures extracts best candidate of class specific region proposals by training a fully convolutional network. In the case of the three stage architecture, the middle stage provides object segmentation, using the output of the activation maps of first stage. The final stage of both architectures is a part of a convolutional neural network that performs multiple instance learning on proposals extracted in the previous stage(s). Our experiments on the PASCAL VOC 2007, 2010, 2012 and large scale object datasets, ILSVRC 2013, 2014 datasets show improvements in the areas of weaklysupervised object detection, classification and localization.
The recognition of human actions and the determination of human attributes are two tasks that call for fine-grained classification. Indeed, often rather small and inconspicuous objects and features have to be detected to tell their classes apart. In order to deal with this challenge, we propose a novel convolutional neural network that mines mid-level image patches that are sufficiently dedicated to resolve the corresponding subtleties. In particular, we train a newly designed CNN (DeepPattern) that learns discriminative patch groups. There are two innovative aspects to this. On the one hand we pay attention to contextual information in an original fashion. On the other hand, we let an iteration of feature learning and patch clustering purify the set of dedicated patches that we use. We validate our method for action classification on two challenging datasets: PASCAL VOC 2012 Action and Stanford 40 Actions, and for attribute recognition we use the Berkeley Attributes of People dataset. Our discriminative mid-level mining CNN obtains state-of-theart results on these datasets, without a need for annotations about parts and poses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.