Acoustofluidic systems are attracting more attention in recent years because of their specifications, like versatility, high biocompatibility, high controllability, and simple design. However it is important to optimize the system parameters, which affects system performance. Simulation techniques have a crucial role in optimization since high fabrication costs limit the number of runs. However, the complex Multiphysics structure of the system makes the optimization process very elaborate. Here, an innovative and feasible numerical method to simulate and optimize the acoustofluidic particle manipulation process is reported. The proposed numerical method consists of three main steps. In the first step, surface acoustic waves are generated and propagated on a piezoelectric substrate. Next, the particle motion under the effect of the acoustophoresis force is simulated using successive two-dimensional models representing the different regions along the microfluidic channel. Finally, the particle trajectory is calculated using the superposition method. The proposed numerical method was validated using a reference experimental study available in the literature. The proposed method successfully simulated the separation of particles with diameters of 10 and 15 μm. This numerical method can be used as an optimization tool for acoustofluidic particle manipulation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.