The purpose of this proof-of-concept study was to develop three-dimensional patient-specific mechanobiological knee joint models to simulate alterations in the fixed charged density (FCD) around cartilage lesions during the stance phase of the walking gait. Two patients with anterior cruciate ligament (ACL) reconstructed knees were imaged at 1 and 3 years after surgery. The magnetic resonance imaging (MRI) data were used for segmenting the knee geometries, including the cartilage lesions. Based on these geometries, finite element (FE) models were developed. The gait of the patients was obtained using a motion capture system. Musculoskeletal modeling was utilized to calculate knee joint contact and lower extremity muscle forces for the FE models. Finally, a cartilage adaptation algorithm was implemented in both FE models. In the algorithm, it was assumed that excessive maximum shear and deviatoric strains (calculated as the combination of principal strains), and fluid velocity, are responsible for the FCD loss. Changes in the longitudinal T 1ρ and T 2 relaxation times were postulated to be related to changes in the cartilage composition and were compared with the numerical predictions. In patient 1 model, both the excessive fluid velocity and strain caused the FCD loss primarily near the cartilage lesion. T 1ρ and T 2 relaxation times increased during the follow-up in the same location. In contrast, in patient 2 model, only the excessive fluid velocity led to a slight FCD loss near the lesion, where MRI parameters did not show evidence of alterations. Significance: This novel proof-of-concept study suggests mechanisms through which a local FCD loss might occur near cartilage lesions. In order to obtain statistical evidence for these findings, the method should be investigated with a larger cohort of subjects.
Use of knee joint finite element models for diagnostic purposes is challenging due to their complexity. Therefore, simpler models are needed for studies where a high number of patients need to be analyzed, without compromising the results of the model. In this study, more complex, kinetic (forces and moments) and simpler, kinetic-kinematic (forces and angles) driven finite element models were compared during the stance phase of gait. Patella and tendons were included in the most complex model, while they were absent in the simplest model. The greatest difference between the most complex and simplest models was observed in the internal-external rotation and axial joint reaction force, while all other rotations, translations and joint reaction forces were similar to one another. In terms of cartilage stresses and strains, the simpler models behaved similarly with the more complex models in the lateral joint compartment, while minor differences were observed in the medial compartment at the beginning of the stance phase. We suggest that it is feasible to use kinetic-kinematic driven knee joint models with a simpler geometry in studies with a large cohort size, particularly when analyzing cartilage responses and failures related to potential overloads.
This study aimed to quantify the long-term progression of blunt and sharp cartilage defects and their effect on joint homeostasis and function of the equine carpus. In nine adult Shetland ponies, the cartilage in the radiocarpal and middle carpal joint of one front limb was grooved (blunt or sharp randomized). The ponies were subjected to an 8-week exercise protocol and euthanized at 39 weeks. Structural and compositional alterations in joint tissues were evaluated in vivo using serial radiographs, synovial biopsies, and synovial fluid samples. Joint function was monitored by quantitative gait analysis. Macroscopic, microscopic, and biomechanical evaluation of the cartilage and assessment of subchondral bone parameters were performed ex vivo. Grooved cartilage showed higher OARSI microscopy scores than the contralateral sham-operated controls (p < 0.0001). Blunt-grooved cartilage scored higher than sharp-grooved cartilage (p = 0.007) and fixed charge density around these grooves was lower (p = 0.006). Equilibrium and instantaneous moduli trended lower in grooved cartilage than their controls (significant for radiocarpal joints). Changes in other tissues included a threefold to sevenfold change in interleukin-6 expression in synovium from grooved joints at week 23 (p = 0.042) and an increased CPII/C2C ratio in synovial fluid extracted from blunt-grooved joints at week 35 (p = 0.010).Gait analysis outcome revealed mild, gradually increasing lameness. In conclusion, blunt and, to a lesser extent, sharp grooves in combination with a period of moderate exercise, lead to mild degeneration in equine carpal cartilage over a 9-month period, but the effect on overall joint health remains limited.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.