A detailed study of the sulfation and desulfation phenomena of a NOx storage reduction catalyst using synthetic gas bench is presented. The experimental observations and results were put together, in order to develop a model, which can simulate the NOx storage reduction catalyst behavior during the sulfation and desulfation conditions. The target is to use the model for simulation of the lean/rich desulfation strategies, in order to comprehend the complicated phenomena and ultimately predict the sulfur speciation at the outlet of the NOx storage reduction catalyst. Sulfation tests in the presence and in the absence of O2 at different temperatures were conducted, in order to identify the different sulfation sites. Desulfation tests with constantly rich conditions and lean/rich oscillation, using H2 as the reducing gas, were performed in order to investigate the reaction pathways of the decomposition of the sulfates. Additionally, some preliminary investigation was performed using CO and decane in the reducing gas mixture, in order to evaluate the NOx storage reduction behavior under more realistic gas composition for diesel exhaust gas. The important role of the accurate prediction of sulfur axial distribution at the desulfation onset was identified. It was found that cerium oxides play a critical role in the sulfation process by increasing the sulfur capacity of the NOx storage reduction catalyst. Finally, it was clarified that the oxygen stored on cerium oxides strongly affects the selectivity of the desulfation products by oxidizing H2S and controlling H2 availability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.