Statistically clustering air pollution can provide evidence of underlying spatial processes responsible for intensifying the concentration of contaminants. It may also lead to the identification of hotspots. The patterns can then be targeted to manage the concentration level of pollutants. In this regard, employing spatial autocorrelation indices as important tools is inevitable. In this study, general and local indices of Moran's I and Getis-Ord statistics were assessed in their representation of the structural characteristics of carbon monoxide (CO) and fine particulate matter (PM 2.5 ) polluted areas in Tehran, Iran, which is one of the most polluted cities in the world. For this purpose, a grid (200 m × 200 m) was applied across the city, and the inverse distance weighted (IDW) interpolation method was used to allocate a value to each pixel. To compare the methods of detecting clusters meaningfully and quantitatively, the pollution cleanliness index (PCI) was established. The results ascertained a high clustering level of the pollutants in the study area (with 99% confidence level). PM 2.5 clusters separated the city into northern and southern parts, as most of the cold spots were situated in the north half and the hotspots were in the south. However, the CO hotspots also covered an area from the northeast to southwest of the city and the cold spots were spread over the rest of the city. The Getis-Ord's PCI suggested a more polluted air quality than the Moran's I PCI. The study provides a feasible methodology for urban planners and decision makers to effectively investigate and govern contaminated sites with the aim of reducing the harmful effects of air pollution on public health and the environment.
Background: Recent reports of the National Ministry of Health and Treatment of Iran (NMHT) show that Gilan has a higher annual incidence rate of leptospirosis than other provinces across the country. Despite several efforts of the government and NMHT to eradicate leptospirosis, it remains a public health problem in this province. Modelling and Prediction of this disease may play an important role in reduction of the prevalence. Methods: This study aims to model and predict the spatial distribution of leptospirosis utilizing Geographically Weighted Regression (GWR), Generalized Linear Model (GLM), Support Vector Machine (SVM) and Artificial Neural Network (ANN) as capable approaches. Five environmental parameters of precipitation, temperature, humidity, elevation and vegetation are used for modelling and predicting of the disease. Data of 2009 and 2010 are used for training, and 2011 for testing and evaluating the models. Results: Results indicate that utilized approaches in this study can model and predict leptospirosis with high significance level. To evaluate the efficiency of the approaches, MSE (GWR = 0.050, SVM = 0.137, GLM = 0.118 and ANN = 0.137), MAE (0.012, 0.063, 0.052 and 0.063), MRE (0.011, 0.018, 0.017 and 0.018) and R 2 (0.85, 0.80, 0.78 and 0.75) are used. Conclusion: Results indicate the practical usefulness of approaches for spatial modelling and predicting leptospirosis. The efficiency of models is as follow: GWR > SVM > GLM > ANN. In addition, temperature and humidity are investigated as the most influential parameters. Moreover, the suitable habitat of leptospirosis is mostly within the central rural districts of the province.
It is of little debate that Leptospirosis is verified as the most important zoonosis disease in tropical and humid regions. In North of Iran, maximum reports have been dedicated to Gilan province and it is considered as an endemic problem there. Therefore, modeling or researching about different aspects of it seems indispensable. Hence, this paper investigated various models of Geographically Weighted Regression (GWR) approach and impacts of seven environmental variables on modelling leptospirosis in Gilan. Accordingly, counts of patients were considered as dependent variable during 2009-2011 at village level and environmental variables were utilized as independent variables in the modelling. In addition, performance of two Kernels (Fixed and Adaptive), two Weighting Functions (Bisquare and Gaussian) and three Bandwidth Selection Criteria (AIC (Akaike Information Criterion), CV (Cross Validation) and BIC (Bayesian information criterion)) were compared and assessed in GWR models. Results illustrated: (1) Leptospirosis and effective variables vary locally across the study area (positive and negative); (2) Adaptive kernel in comparison to Fixed kernel, Bisquare weighting function to Gaussian, and also AIC to CV and BIC (due to R 2 and Mean Square Error (MSE) validation criteria); (3) Temperature and humidity were founded as impressive factors (include higher values of coefficients); Finally, contain more reliable results consecutively. However, the provided distribution maps asserted that central villages of Gilan not only are more predisposed to leptospirosis prevalence, but also prevention programs should focus on these regions more than others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.